Many superconductor applications require cables with a high current capacity. This is not feasible with single-piece coated conductors because their ac losses are too large. Therefore, it is necessary to develop superconducting cables with a high current capacity and low ac losses. One promising solution is given by ROEBEL cables. We assembled three ROEBEL cables from commercial YBCO coated conductors. The cables have the same width but a different number of strands, which results in different aspect ratios and current capacities. We experimentally studied their ac losses under a transport current or a perpendicular magnetic field. In addition, we performed numerical calculations, which agree with the experiments, especially for the transport case. We found that in the cables there is good current sharing between the strands. We also found that stacking the strands reduces the magnetization losses. For a given critical current, thicker cables have lower magnetization ac losses. In addition, a conducting matrix is not required for a good current sharing between strands.
The current distribution and the AC loss in a composite superconducting tape containing a layer from magnetic material is calculated and compared with experiments, showing a very good agreement. The situations of an alternating uniform applied field or a transport current are studied. The newly developed numerical model is an approximation to the critical state model, adapted for the applicability to commercial finite elements codes that solve the vector potential. Substantial feature of this procedure is that it can be carried out in the case when the critical current density in superconductor depends on the magnetic field and the magnetic layer material is nonlinear. Additionally, the hysteresis loss in the magnetic material is estimated, based on its measured magnetization loops. Measurements on Bi-2223 multifilamentary tapes covered on edges by nickel confirmed our predictions, showing a substantial ac loss reduction in both the investigated regimes. Short title: AC loss in superconductor-ferromagnetic composite wire PACS: 84.71.Mn, 74.25.Sv
Coated conductor applications such as fusion magnets, particle accelerator magnets and generator windings require high current-carrying capabilities. This requirement can be fulfilled by various cable concepts using commercial long length REBCO coated conductors with high current-carrying performance. In the past few years, our group has successfully developed the Roebel cable concept for coated conductors. The design advantages of such a cable are high current-carrying capability and low alternating current (AC) losses. Unfortunately, for large-scale applications, the possibilities of a simple scale-up of the Roebel geometry are limited and additional design ideas are needed. One way to reach the required high currents is the Rutherford cable concept. In this concept a conductor is wound with transposition on a flat metal former. In order to design the former, the bending properties of the Roebel assembled coated conductor cables (RACC) must be measured and characterized. This allows the identification of a destruction-free interval for the Roebel cable, in terms of bending angle and transposition length. In this work we designed and assembled a demonstrator of a coated conductor Rutherford cable (CCRC) with three RACC cables. We measured the critical current and the AC losses of the cable demonstrator. Our results show that, despite still needing efforts in terms of reproducibility of the assembly process and of AC loss reduction, this design is a promising and viable solution for high current-capacity cables made of coated conductors.
Magnetic diverters are commonly used in order to reduce the AC loss in superconducting coils. However, they have not been proved to work on YBa2Cu3O7−x-coated conductor coils. Moreover, modeling tools are required for predicting the resulting AC loss and understanding the loss mechanisms. In this paper, a coated conductor pancake coil with ferromagnetic diverter is measured and simulated. The magnetic diverter reduces the AC loss but the critical current practically does not change. Our simulations show that a diverter wider than that in the measurements can reduce the loss below that of a single strip. Therefore, the optimum diverter size should be obtained by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.