Secondary flow effects like the corner stall between the wall and the vane in a compressor stage are responsible for a large part of total pressure losses. An extensive experimental study of flow control in a highly loaded compressor cascade was performed in order to decrease the separation and reduce the losses by means of vortex generators. The vortex generators were attached at the surface of the cascade side walls. These flow control devices produce strong vortices, which enhance the mixing between the main flow and the decelerated boundary layer at the side wall. Thus, the corner flow separation and the total pressure losses could be reduced. The experiments were carried out with a compressor cascade at a high-speed test facility at the DLR in Berlin at minimum loss (design point) and off-design of the cascade at Reynolds numbers up to Re = 0.6 × 106 (based on 40 mm chord) and Mach numbers up to M = 0.7. The cascade consisted of five vanes. The blade profiles are comparable to the hub section of the stator vanes used in the transonic compressor test rig running at Technische Universita¨t Darmstadt. In the range between −2° and +4° angle of incidence the total pressure losses of the cascade could be reduced up to 4.6% by means of vortex generators, whereas the static pressure rise was not influenced. Based on the results of the cascade measurements, the vortex generators were applied in front of the stator row of the single stage axial compressor at Technische Universita¨t Darmstadt. A numerical simulation of the compressor flow provided an indication for the adjustment of the vortex generators at the hub and casing. In the experiments the pressure rise and the efficiency of the axial compressor was measured and it could be shown that vortex generators partially improve the efficiency.
The influence of circumferential grooves on the tip flow field of an axial single-stage transonic compressor rotor has been examined experimentally and numerically. The compressor stage provides a strongly increased stall margin with only small penalties in efficiency when the casing treatment is applied. Due to the complex interactions of the grooves with the rotor flow, unsteady measurement techniques have been chosen as an attempt to identify the aerodynamic effects responsible for the operating range extension. Therefore, the casing treatment has been instrumented with piezoresistive pressure sensors in the land between the grooves providing high-resolution static wall pressure measurements at different operating conditions. Data acquisition worked at a sampling rate of 125kHz, providing around 23 static pressure values per blade passage at 11 axial positions at the nominal speed of 20,000 rpm. A comparable dataset, but with 14 sensors, was obtained for the smooth casing. The results show the fluctuation of the tip leakage vortex and shock-vortex-interactions as well as the changed situation with casing treatment. Ensemble-averaged data shows tip leakage vortex trajectories. At near stall conditions with the smooth casing, the vortex hits the front part of the adjacent blade, which indicates the possibility of a spill forward of low momentum fluid into the next passage. Standard deviation values prove a high fluctuation of the pressure field over the tip gap. When the casing treatment is applied, the vortex trajectory maintains alignment along the blade’s suction side, thus preventing the onset of rotating stall. Results are presented as a back-to-back comparison of the smooth casing versus the treated casing at three operating conditions: peak efficiency at a mass flow rate of m˙pe = 16.2kg/s, near stall of the smooth casing at m˙nssc = 14.0kg/s and near stall of the treated casing at m˙ns = 12.6kg/s. Steady and unsteady numerical simulations of the rotor-only flow field have been calculated with and without grooves. These calculations aim at a broad analysis of the occurring flow phenomena at the rotor tip. Tip leakage flow behaviour and vortex trajectories are discussed in detail by summarizing the congruent findings of both numerical and experimental investigations.
A single-stage transonic axial compressor was equipped with a casing treatment (CT), consisting of 3.5 axial slots per rotor pitch in order to investigate the predicted extension of the stall margin characteristics both numerically and experimentally. Contrary to most other studies the CT was designed especially accounting for an optimized optical access in the immediate vicinity of the CT, rather than giving maximum benefit in terms of stall margin extension. Part 1 of this two-part contribution describes the experimental investigation of the blade tip interaction with casing treatment using Particle image velocimetry (PIV). The nearly rectangular geometry of the CT cavities allowed a portion of it to be made of quartz glass with curvatures matching the casing. Thus the flow phenomena could be observed with essentially no disturbance caused by the optical access. Two periscope light sheet probes were specifically designed for this application to allow for precise alignment of the laser light sheet at three different radial positions in the rotor passage (87.5%, 95% and 99%). For the outermost radial position the light sheet probe was placed behind the rotor and aligned to pass the light sheet through the blade tip clearance. It was demonstrated that the PIV technique is capable of providing velocity information of high quality even in the tip clearance region of the rotor blades. The chosen type of smoke-based seeding with very small particles (about 0.5 μm in diameter) supported data evaluation with high spatial resolution, resulting in a final grid size of 0.5 × 0.5 mm. The PIV data base established in this project forms the basis for further detailed evaluations of the flow phenomena present in the transonic compressor stage with CT and allows validation of accompanying CFD calculations using the TRACE code. Based on the combined results of PIV measurements and CFD calculations of the same compressor and CT geometry a better understanding of the complex flow characteristics can be achieved, as detailed in Part 2 of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.