Sensing reaction mechanism is crucial for enhancing the sensing performance of semiconductor-based sensing materials. Here we show a new strategy to enhancing sensing performance of SnO2 nanocrystals by increasing the density of unsaturated Sn atoms with dangling bonds at the SnO2 surface through hydrogenation. A concept of the surface unsaturated Sn atoms serving as active sites for the sensing reaction is proposed, and the sensing mechanism is described in detail at atomic and molecule level for the first time. Sensing properties of other metal oxide sensors and catalytic activity of other catalysts may be improved by using the hydrogenation strategy. The concept of the surface unsaturated metal atoms serving as active sites may be very useful for understanding the sensing and catalytic reaction mechanisms and designing advanced sensing sensors, catalysts and photoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.