We present an easy way of observing superluminal group velocities using a birefringent optical fiber and other standard devices. In the theoretical analysis, we show that the optical properties of the setup can be described using the notion of "weak value". The experiment shows that the group velocity can indeed exceed c in the fiber; and we report the first direct observation of the so-called "signal velocity", the speed at which information propagates and that cannot exceed c.The physics of light propagation is a very timely topic because of its relevance for both classical [1] and quantum [2] communication. Two kind of velocities are usually introduced to describe the propagation of a wave in a medium with dispersion ω(k): the phase velocity v ph = ω k and the group velocity v g = ∂ω ∂k . Both of these velocities can exceed the speed of light in vacuum c in suitable cases [3]; hence, neither can describe the speed at which the information carried by a pulse propagates in the medium. Indeed, since the seminal work of Sommerfeld, extended and completed by Brillouin [4], it is known that information travels at the signal velocity, defined as the speed of the front of a square pulse. This velocity cannot exceed c [5]. The fact that no modification of the group velocity can increase the speed at which information is transmitted has been directly demonstrated in a recent experiment [6]. Superluminal (or even negative) and, on the other extreme, exceedingly small group velocities, have been observed in several media [7]. In this letter we report observation of both superluminal and delayed pulse propagation in a tabletop experiment that involves only a highly birefringent optical fiber and other standard telecom devices.Before describing our setup, it is useful to understand in some more detail the mechanism through which anomalous group velocities can be obtained. For a light pulse sharply peaked in frequency, the speed of the center-of-mass is the group velocity v g of the medium for the central frequency [3]. In the absence of anomalous light propagation, the local refractive index of the medium is n f , supposed independent on frequency for the region of interest. The free propagation simply yields v g = L/t f where L is the length of the medium and t f = n f L/c is the free propagation time. One way to allow fast-and slow-light amounts to modify the properties of the medium in such a way that it becomes opaque for all but the fastest (slowest) frequency components. The center-of-mass of the outgoing pulse appears then at a time t = t f + t , with t the mean time of arrival once the free propagation has been subtracted; obviously t < 0 for fast-light, t > 0 for slow-light. If the deformation of the pulse is weak, the group velocity is still the speed of the center-of-mass, now given by( 1) This can become either very large and even negative ( t → −∞) or very small ( t → ∞) -although in these limiting situations the pulse is usually strongly distorted, so that our reasoning breaks down.We can now move to our setu...
Optical time domain reflectometery (OTDR) is one of the most used measurement techniques in the characterization of optical fiber links. In this paper, we present a thorough investigation of an OTDR using a Peltier cooled photon-counting detector at 1.55 um. Due to its superior spatial resolution and the absence of classical dead-zones, it is well suited for detailed, high resolution analysis of problem zones. We give a detailed analysis of its performance, and also demonstrate that a polarization-sensitive photon-counting OTDR can be used to extract local birefringences too large to be measured with standard P-OTDRs
Abstract:We analyze experimentally the polarization properties of highly nonlinear small-core photonic crystal fibers (PCFs) with no intentional birefringence. The properties of recently emerged polarization maintaining PANDA PCFs are also investigated. The wavelength and temperature dependence of phase and group delay of these fibers are examined in the telecommunications wavelength range. Compared to a standard PANDA fiber, the polarization characteristics and temperature dependence are found to be qualitatively different for both types of fibers.
Abstract:The properties of a hollow core photonic bandgap fiber designed for 1.55 um transmission are investigated with special emphasis on polarization issues. Large and strongly wavelength dependent phase and group delays are found. At the same time the principle states of polarization move strongly and erratically as a function of wavelength, leading to strong mode coupling. Wavelength regions with high polarization dependent loss coincide with depolarization due to a polarization dependent coupling to surface modes at these wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.