Awareness is growing that fresh or minimally processed fruit and vegetables can be sources of disease-causing bacteria, viruses, protozoa, and helminths. Irrigation with poor-quality water is one way that fruit and vegetables can become contaminated with foodborne pathogens. Groundwater, surface water, and human wastewater are commonly used for irrigation. The risk of disease transmission from pathogenic microorganisms present in irrigation water is influenced by the level of contamination; the persistence of pathogens in water, in soil, and on crops; and the route of exposure. Groundwater is generally of good microbial quality, unless it is contaminated with surface runoff; human wastewater is usually of very poor microbial quality and requires extensive treatment before it can be used safely to irrigate crops; surface water is of variable microbial quality. Bacteria and protozoa tend to show the poorest survival outside a human host, whereas viruses and helminths can remain infective for months to years. Guidelines governing irrigation water quality and strategies to reduce the risk of disease transmission by foodborne pathogens in irrigation are discussed.
Background: Genetic analysis of Escherichia coli O157:H7 strains has shown divergence into two distinct lineages, lineages I and II, that appear to have distinct ecological characteristics, with lineage I strains more commonly associated with human disease. In this study, microarray-based comparative genomic hybridization (CGH) was used to identify genomic differences among 31 E. coli O157:H7 strains that belong to various phage types (PTs) and different lineage-specific polymorphism assay (LSPA) types.
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
In this study, the association between genotypic and selected phenotypic characteristics was examined in a collection of Canadian Escherichia coli O157:H7 strains isolated from humans and cattle in the provinces of Alberta, Ontario, Saskatchewan, and Quebec. In a subset of 69 strains selected on the basis of specific phage types (PTs), a strong correlation between the lineage-specific polymorphism assay (LSPA6) genotype and PT was observed with all strains of PTs 4, 14, 21, 31, 33, and 87 belonging to the LSPA6 lineage I (LSPA6-LI) genotype, while those of PTs 23, 45, 67, and 74 belonged to LSPA6 lineage II (LSPA6-LII) genotypes. This correlation was maintained when additional strains of each PT were tested. E. coli O157:H7 strains with the LSPA6-LI genotype were much more common in the collection than were the LSPA6-LII or lineage I/II (LSPA6-LI/II)-related genotypes (82.6, 11.2, and 5.8%, respectively). Of the strains tested, proportionately more LSPA6-LI than LSPA6-LII genotype strains were isolated from humans (52.7% versus 19.7%) than from cattle (47.8% versus 80.2%). In addition, 96.7% of the LSPA6-LII strains carried the stx 2c variant gene, while only 50.0% of LSPA6-LI/II and 2.7% of LSPA6-LI strains carried this gene. LSPA6-LII strains were also significantly more likely to possess the colicin D gene, cda (50.8% versus 23.2%), and have combined resistance to streptomycin, sulfisoxazole, and tetracycline (72.1% versus 0.9%) than were LSPA6-LI strains. The LSPA6 genotype-and PT-related characteristics identified may be important markers of specific ecotypes of E. coli O157:H7 that have unique epidemiological and virulence characteristics.Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 is the leading cause of hemorrhagic colitis and hemolytic-uremic syndrome (HUS) throughout the world (16,23,25). Cattle colonized by E. coli O157:H7 are thought to be the primary reservoir of this bacterium, and its transmission to humans frequently results from the ingestion of contaminated food and water (16,23,35).Results of multiple studies suggest that E. coli O157:H7 strains may differ in their association with human disease. An increasing body of evidence has shown that strains can differ in the type and level of expression of virulence factors (3,28,29,47,48). Similarly, in vivo testing of strains in the gnotobiotic pig model has shown that human isolates caused more severe symptoms than cattle isolates, suggesting that cattle-derived strains may differ in their virulence with respect to those isolated from humans (3). High-resolution genotyping studies on E. coli O157:H7 strains from the United States and Australia using octamer-based genome scanning (OBGS) first demonstrated that the E. coli O157:H7 clonal complex has diverged through two primary lineages, designated lineage I and lineage II, and that these two lineages differ in their frequency of association with human disease (28,29,54). Subsequent studies using a more efficient multiplex PCR assay based on OBGS, the lineage specific polymorphism ass...
Raw (unpasteurized) milk can be a source of food-borne pathogens. Raw milk consumption results in sporadic disease outbreaks. Pasteurization is designed to destroy all bacterial pathogens common to raw milk, excluding spore-forming bacteria and possibly Mycobacterium paratuberculosis, but some people continue to drink raw milk, believing it to be safe. Current methods for assessing the bacteriological quality of raw milk, such as aerobic plate counts, are not usually designed to detect specific pathogens. The objective of this study was to estimate the proportion of pick-ups (loads of raw milk from a single farm bulk tank) from Ontario farm bulk tanks that contained Listeria monocytogenes. Salmonella spp., Campylobacter spp., and/or verotoxigenic Escherichia coli (VTEC). Samples from 1,720 pick-ups of raw milk were tested for the presence of these pathogens, and 47 L. monocytogenes, three Salmonella spp., eight Campylobacter spp., and 15 VTEC isolates were detected, representing 2.73, 0.17, 0.47, and 0.87% of milk samples, respectively. Estimates of the proportion of theoretical tanker truck loads of pooled raw milk contaminated with pathogens ranged from a low of 0.51 % of tankers containing raw milk from 3 bulk tanks being contaminated with Salmonella spp. to a high of 34.41 % of tankers containing raw milk from 10 bulk tanks being contaminated with at least one of the pathogens. Associations between the presence of pathogens and raw milk sample characteristics were investigated. The mean somatic cell count was higher among VTEC- or L. monocytogenes-positive samples, and the mean aerobic plate count was found to be higher among L. monocytogenes-positive samples. These results confirm the presence of bacterial food pathogens in raw milk and emphasize the importance of continued diligence in the application of hygiene programs within dairies and the separation of raw milk from pasteurized milk and milk products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.