BackgroundTo derive and exploit the optimal prescription isodose level (PIL) in inverse optimization of volumetric modulated arc radiotherapy (VMAT) as a potential approach to dose de–escalation in stereotactic body radiotherapy for non–small cell lung carcinomas (NSCLC).MethodsFor ten patients, inverse Monte Carlo dose optimization was performed to cover 95% PTV by varying prescription isodose lines (PIL) at 60 to 80% and reference 85%. Subsequently, these were re–normalized to the median gross tumor volume dose (GTV–based prescription) to assess the impacts of PTV and normal tissue dose reduction.ResultsWith PTV–based prescription, GTV mean dose was much higher with the optimized PIL at 60% with significant reduction of normal lung receiving 30 to 10 Gy (V30–10Gy), and observable but insignificant dose reduction to spinal cord, esophagus, ribs, and others compared with 85% PIL. Mean doses to the normal lung between PTV and GTV was higher with 60–70% PIL than 85%. The dose gradient index was 5.0 ± 1.1 and 6.1 ± 1.4 for 60 and 85% PIL (p < 0.05), respectively. Compared with the reference 85% PIL plan using PTV–base prescription, significant decreases of all normal tissue doses were observed with 60% and 70% PIL by GTV–based prescription. Yet, the resulting biological effective (BED) mean doses of PTV remain sufficiently high, ranging 104.2 to 116.9 Gy α/β = 10.ConclusionsOptimizing the PIL with VMAT has notable advantage of improving the dosimetric quality of lung SBRT and offers the potential of dose de–escalation for surrounding tissues while increasing the GTV dose simultaneously. The clinical implication of re–normalizing plans from PTV–prescription at 60–70% to the GTV median dose requires further investigations.
In an occupational compensation setting, disease indices and history of tuberculosis are independent predictors of both airflow obstruction and reduced vital capacity for silicotic patients.
Treating lung tumors with CyberKnife through continuous tracking of the vertebrae should not be attempted without effective means to reduce the amplitude and variability of target motion because temporal dose variations owing to the intrafractional target motion can be significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.