Using light microscopy and immunocytochemistry, we investigated the morphological changes of retinal tissues and the reaction of Müller cells in the ischemic rat retina induced by increasing intraocular pressure. At early stages (from 1 h to 24 h after reperfusion), cells in the ganglion cell layer and in the inner nuclear layer showed some degenerative changes, but at later stages (from 72 h to 4 weeks) marked degenerative changes occurred in the outer nuclear layer (ONL). At 4 weeks after reperfusion, the ONL was reduced to 1 or 2 cell layers. Immunoreactivity for glial fibrillary acidic protein (GFAP) appeared in the endfeet and distal processes of Müller cells as of 1 h after reperfusion. GFAP immunoreactivity in Müller cells increased up to 2 weeks and then decreased at 4 weeks after reperfusion. Our findings suggest that Müller cells are involved in the pathophysiology of retinal ischemia through the expression of GFAP. The degree of GFAP expression in Müller cells closely correlated with that of the degeneration of retinal neurons.
In rabbit and rat retinae, wholemounted preparations and 40 microm thick vibratome sections were processed for nitric oxide synthase (NOS) immunoreactivity and consecutive semithin sections were immunostained with anti-NOS and anti-GABA antisera, respectively. Two types of NOS-labelled amacrine cells were identified: type 1 cells with larger somata were intensely stained, and type 2 cells with smaller somata were weakly stained. A few displaced amacrine cells also showed NOS-like immunoreactivity. All these NOS-like immunoreactive neurons also expressed GABA-like immunoreactivity. Thus, nitric-oxide-containing neurons might constitute a subpopulation of GABAergic neurons in rabbit and rat retinae.
This study was undertaken to investigate the developmental expression of osteopontin (OPN) in the rat brainstem and cerebellum by Northern blotting and in situ hybridization. The expression of OPN was noted in the mesencephalic Vth nucleus initially at embryonic day 16 (E16). At E20, the labeling extended into other brainstem nuclei including the cochlear, vestibular, facial motor, and hypoglossal nuclei. During the first week of postnatal life, the OPN signal in the brainstem increased markedly, and by P14, OPN expression was found in functionally diverse areas including motor-related areas, sensory relay nuclei, and the reticular formation. The adult labeling pattern was established in central neurons at this time. These results corresponded well with those from Northern blot analysis. On the basis of morphological and distribution criteria, the OPN signal in several nuclei appeared to be contained exclusively within neuronal soma. OPN expression in neurons occurred during the period of neuronal differentiation and increased with maturation. Our results therefore suggest that OPN contributes to developmental processes, including the differentiation and maturation of specific neuronal populations, in the rat brain.
Expression patterns of phospholipase D1 (PLD1) in the developing rat retina were investigated using immunocytochemistry and Western blot analysis and compared with the expression patterns of glutamine synthetase. PLD1 immunoreactivity appeared first in a few neuroblasts in the middle of the mantle zone of the primitive retina by embryonic (E) day 13. PLD1-immunoreactive primitive ganglion cells were characterized in the ganglion cell layer by E17. Faint immunoreactivity at E17 profiled radially orientated cells and this pattern appeared up to postnatal (P) day 7. In the ganglion cell layer at P3, displaced amacrine cells and ganglion cells were classified. At P5, presumptive horizontal cells and amacrine cells were identified. By P7, a thin outermost layer of newly formed segments of the photoreceptor cells was also PLD1 immunoreactive. PLD1 immunoreactivity at P8 was limited to radial Müller cells and the outer segment layer of the photoreceptor cells, and the expression pattern was conserved to adulthood. Western blot analysis showed relatively high amounts of PLD1 protein at E17 and P3, a decrease at P7, and moderate amounts from P8 onward. Co-expression of PLD1 with glutamine synthetase in the retina appeared first after birth in differentiating neurons and in Müller cells by P8; thereafter the pattern was maintained. The expression pattern of the PLD1 during development of the retina suggests that PLD1 plays important roles in glutamate-associated differentiation of both specific neurons and radial glial cells, and in glutamate-mediated cellular signalling in Müller cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.