This study aims to synthesize new chalcone oxime functionalized graphene oxide (CO-GO) and investigate the enhancement in corrosion protection. The morphology and structure of the synthesized CO-GO have been characterized by elemental analysis: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Moreover, the effectiveness of corrosion inhibition was investigated by utilizing electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). The results of the above analyses demonstrate that CO-GO has an outstanding corrosion inhibitor performance of up to 94% and acts as a mixed-type inhibitor with a primarily anodic action. The effect of temperature on a carbon steel surface indicates that the tested composites are chemisorbed. A few techniques were able to provide surface characterization such as scanning electron microscopy and ultraviolet (UV)−visible spectroscopy to confirm inhibitor adsorption on the carbon steel surface.
Inhibition of corrosion of copper in 2M HNO 3 by N-1-naphthylethylenediamine dihydrochloride monomethanolate (N-NEDHME) has been studied by use of weight loss, electrochemical polarization, and electrochemical impedance spectroscopy (EIS) measurements. The result obtained reveal that this organic compound is a very good inhibitor and its inhibition efficiency increases with increasing concentration, reaching 94% at 10 -3 M at 303 K. The potentiodynamic polarization study indicated that this compound acts as a cathodic type corrosion inhibitor. EIS results indicate that the change in the impedance properties (R t and C dl ) with concentration of inhibitor was because of the formation of a protective layer on the surface of copper. Quantum chemical calculations using DFT at the B3LYP/6-31G* level of theory was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of N-NEDHME. The effect of temperature between 303 and 343 K and calculation of activation data will be discussed in Part 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.