Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a very destructive wheat (Triticum aestivum) disease. Resistance was transferred from Elytrigia intermedium to common wheat by crossing and backcrossing, and line GRY19, that was subsequently selected, possessed a single dominant gene for seedling resistance. Five polymorphic microsatellite markers, Xgwm297, Xwmc335, Xwmc364, Xwmc426 and Xwmc476, on chromosome arm 7BS, were mapped relative to the powdery mildew resistance locus in an F(2) population of Mianyang 11/GRY19. The loci order Xwmc426-Xwmc335-Pm40-Xgwm297-Xwmc364-Xwmc476, with 5.9, 0.2, 0.7, 1.2 and 2.9 cM genetic distances, was consistent with published maps. The resistance gene transferred from Elytrigia intermedium into wheat line GRY19 was novel, and was designated Pm40. The close flanking markers will enable marker assisted transfer of this gene into wheat breeding populations.
Stripe rust resistance transferred from Thinopyrum intermedium into common wheat was controlled by a single dominant gene, which mapped to chromosome 1B near Yr26 and was designated YrL693. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a highly destructive disease of wheat (Triticum aestivum). Stripe rust resistance was transferred from Thinopyrum intermedium to common wheat, and the resulting introgression line (L693) exhibited all-stage resistance to the widely virulent and predominant Chinese pathotypes CYR32 and CYR33 and to the new virulent pathotype V26. There was no cytological evidence that L693 had alien chromosomal segments from Th. intermedium. Genetic analysis of stripe rust resistance was performed by crossing L693 with the susceptible line L661. F(1), F(2), and F(2:3) populations from reciprocal crosses showed that resistance was controlled by a single dominant gene. A total 479 F(2:3) lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to six publicly available and three recently developed wheat genomic SSR markers. The linked markers were localized to wheat chromosome 1B using Chinese Spring nulli-tetrasomic lines, and the resistance gene was localized to chromosome 1B based on SSR and wheat genomic information. A high-density genetic map was also produced. The pedigree, molecular marker data, and resistance response indicated that the stripe rust resistance gene in L693 is a novel gene, which was temporarily designated YrL693. The SSR markers that co-segregate with this gene (Xbarc187-1B, Xbarc187-1B-1, Xgwm18-1B, and Xgwm11-1B) have potential application in marker-assisted breeding of wheat, and YrL693 will be useful for broadening the genetic basis of stripe rust resistance in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.