Glial-derived neurotrophic factor (GDNF) was tested for its ability to prevent hearing and sensory cell loss in guinea pigs exposed to acoustic trauma. Hearing was measured prior to any treatment. Animals were exposed to damaging levels of noise either before or after local application of GDNF to one ear. Four weeks later, hearing and sensory cell loss was greater in the control ear than in the ear receiving GDNF before acoustic trauma or 2 h after trauma, but not 4 or 6 h after trauma. The results indicate that GDNF treatment in vivo can prevent cochlear sensory cell damage and hearing loss if present during or shortly after acoustic trauma.
Objective: Methamphetamine (MA) abuse induces neurotoxicity and causes neuronal cell apoptosis. Gastrodin is a traditional Chinese herbal medicine used for the treatment of nerve injuries, spinal cord injuries, and some central nervous system diseases as well. The present study investigated the neuroprotective effects of gastrodin against MA-induced neurotoxicity in neuronal cells and its potential protective mechanism. Methods: The primary cortex neuronal culture was divided into four groups (control group, MA group, MA + gastrodin group, and MA + gastrodin + small interfering RNA group). The neurotoxicity of MA was assessed by detecting apoptotic cells by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay and cell viability by cell counting kit 8 (CCK-8) method, the Tuj1-positive cells and the average axonal length were detected by immunofluorescence, and the expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding (CREB), and brain-derived neurotrophic factor (BDNF) proteins were detected by Western blot. Results: The results of CCK-8 assay showed that 0.5 mM MA was an optimal concentration that induced neurotoxicity ( p < 0.01). Pretreatment with 25 mg/L gastrodin exerted maximum protective effects on neuronal cells. The expression levels of cAMP, PKA, phosphorylated PKA, CREB, phosphorylated CREB, and BDNF proteins were decreased in the MA group, and pretreatment with gastrodin upregulated the expression levels of these proteins ( p < 0.01). The expressions of PKA and CREB proteins showed no significant changes in the control group, MA group, and gastrodin group. Compared the MA + gastrodin + small interfering RNA group with MA + gastrodin group, the Tuj1-positive cells and the average axonal length were decreased significantly, while the number of apoptotic cells was increased ( p < 0.05). Conclusion: Gastrodin has neuroprotective effects against MA-induced neurotoxicity, which exerts neuroprotective effects via regulation of cAMP/PKA/CREB signaling pathway and upregulates the expression of BDNF.
ABSTRACT. Brontispa longissima is one of the most serious insect pests of coconut in Southeast Asia; it was first discovered on Hainan Island in June 2002. Despite the economic risk associated with this pest, genetic aspects of the invasion process have remained relatively unexplored. Using microsatellite markers, we investigated the population structure, genetic variability and pattern of invasion in various geographic populations. The methodology was based on a modified biotin-capture method. Eight polymorphic microsatellite loci were isolated and characterized for the pest. The allele number per locus varied from 2 to 3 (N = 30). The expected and observed heterozygosities of the eight loci ranged from 0.042 to 0.509 and from 0.042 to 0.963, respectively. Although the frequency of polymorphisms was not very high in this population, the microsatellite loci that were isolated will be useful for investigating the genetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.