We introduce herein the induced-charge electrokinetic phenomenon to nanometer fluidic systems; the design of the nanofluidic ion diode for field-effect ionic current control of the nanometer dimension is developed by enhancing internal ion concentration polarization through electrochemical transport of inhomogeneous inducing-counterions resulting from double gate terminals mounted on top of a thin dielectric layer, which covers the nanochannel connected to microfluidic reservoirs on both sides. A mathematical model based on the fully-coupled Poisson-Nernst-Plank-Navier-Stokes equations is developed to study the feasibility of this structural configuration causing effective ionic current rectification. The effect of various physiochemical and geometrical parameters, such as the native surface charge density on the nanochannel sidewalls, the number of gate electrodes (GE), the gate voltage magnitude, and the solution conductivity, permittivity, and thickness of the dielectric coating, as well as the size and position of the GE pair of opposite gate polarity, on the resulted rectification performance of the presented nanoscale ionic device is numerically analyzed by using a commercial software package, COMSOL Multiphysics (version 5.2). Three types of electrohydrodynamic flow, including electroosmosis of 1st kind, induced-charge electroosmosis, and electroosmosis of 2nd kind that were originated by the Coulomb force within three distinct charge layers coexist in the micro/nanofluidic hybrid network and are shown to simultaneously influence the output current flux in a complex manner. The rectification factor of a contrast between the ‘on’ and ‘off’ working states can even exceed one thousand-fold in the case of choosing a suitable combination of several key parameters. Our demonstration of field-effect-tunable nanofluidic ion diodes of double external gate electrodes proves invaluable for the construction of a flexible electrokinetic platform for ionic current control and may help transform the field of smart, on-chip, integrated circuits.
The characteristics of the oral microbiota may depend on oral health, age, diet, and geography, but the influence of the geographic setting on the oral microbiota has received limited attention. The characteristics of oral microbiota have been reported to differ between urban and rural environments. In order to minimize the influence of genetic background, we recruited 54 volunteers from the same ethnic group, living in urban and rural areas of Gansu Province, China. We collected dental plaque samples and divided them into four groups according to the participant’s area of residence and dental caries status. We sequenced the 16S rRNA of these samples using the Pacific Biosciences sequencing platform and analyzed the correlation between the geographic area and the characteristics of the oral microbiota. Analysis of the alpha and beta diversity revealed that there were significant differences in diversity and composition of dental plaque microflora among the four groups. Cluster analysis revealed that geographic area played an important role in determining the oral microbiota. Network analysis of oral microorganisms showed that geographic differences had major influence on the composition characteristics and internal structure of oral microorganisms. We found that some dominant strains which may play a key role in maintaining oral health, such as Streptococcus oralis, Capnocytophaga sputigena, Porphyromonas catoniae, Corynebacterium matruchotii, Haemophilus parainfluenzae, and Prevotella loescheii, were less affected by the geographic setting. These results provide a deeper understanding of factors influencing the composition of the oral microbiota and could contribute to early diagnosis and effective prevention of dental caries in different settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.