SummaryMicrotubules are essential for polarized transport in neurons, but how their organization guides motor proteins to axons or dendrites is unclear. Because different motors recognize distinct microtubule properties, we used optical nanoscopy to examine the relationship between microtubule orientations, stability, and modifications. Nanometric tracking of motors to super-resolve microtubules and determine their polarity revealed that in dendrites, stable and acetylated microtubules are mostly oriented minus-end out, while dynamic and tyrosinated microtubules are oriented oppositely. In addition, microtubules with similar orientations and modifications form bundles that bias transport. Importantly, because the plus-end-directed Kinesin-1 selectively interacts with acetylated microtubules, this organization guides this motor out of dendrites and into axons. In contrast, Kinesin-3 prefers tyrosinated microtubules and can enter both axons and dendrites. This separation of distinct microtubule subsets into oppositely oriented bundles constitutes a key architectural principle of the neuronal microtubule cytoskeleton that enables polarized sorting by different motor proteins.
A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation Highlights d Development of a FRET-based biosensor of MPS1 kinase activity d Active MPS1 detected at centromeres and chromatin is derived from kinetochores d MPS1 activity is initiated 12 min before NEB in a PP2A-B56dependent manner d Colon cancer cell lines and organoids have lower MPS1 activity than healthy lines
The Structural Maintenance of Chromosomes (SMC) complexes cohesin and condensin establish the 3D organization of mitotic chromosomes. Cohesin is essential to maintain sister chromatid pairing until anaphase onset4, while condensin is important for mitotic centromere structure and elastic resistance to spindle forces. Both complexes are also important to form productive kinetochore-spindle attachments. How condensin and cohesin work together to shape the mitotic centromere to ensure faithful chromosome segregation remains unclear. Here we show by super-resolution imaging, Capture-C analysis and polymer modeling that vertebrate centromeres are partitioned into two distinct condensin-dependent subdomains during mitosis. This bipartite sub-structure is found in human, mouse and chicken centromeres and also in human neocentromeres devoid of satellite repeats, and is therefore a fundamental feature of vertebrate centromere identity. Super-resolution imaging reveals that bipartite centromeres assemble bipartite kinetochores with each subdomain capable of binding a distinct microtubule bundle. Cohesin helps to link the centromere subdomains, limiting their separation in response to mitotic spindle forces. In its absence, separated bipartite kinetochores frequently engage in merotelic spindle attachments. Consistently, uncoupling of centromere subdomains is a common feature of lagging chromosomes in cancer cells. The two-domain structure of vertebrate regional centromeres described here incorporates architectural roles for both condensin and cohesin and may have implications for avoiding chromosomal instability in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.