Human mesenchymal stem cells isolated from Wharton's jelly of the umbilical cord were induced to transform into dopaminergic neurons in vitro through stepwise culturing in neuron-conditioned medium, sonic hedgehog, and FGF8. The success rate was 12.7%, as characterized by positive staining for tyrosine hydroxylase (TH), the rate-limiting catecholaminergic synthesizing enzyme, and dopamine being released into the culture medium. Transplantation of such cells into the striatum of rats previously made Parkinsonian by unilateral striatal lesioning with the dopaminergic neurotoxin 6-hydroxydopamine partially corrected the lesion-induced amphetamine-evoked rotation. Viability of the transplanted cells at least 4 months after transplantation was identified by positive TH staining and migration of 1.4 mm both rostrally and caudally. These results suggest that human umbilical mesenchymal stem cells have the potential for treatment of Parkinson's disease. STEM CELLS 2006; 24:115-124
Background and Purpose-Stroke is a cerebrovascular defect that leads to many adverse neurological complications.Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Methods-Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Results-Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Conclusions-Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.