Resistance of pathogenic microorganisms against antimicrobials is a major threat to contemporary human society. It necessitates a perpetual influx of novel antimicrobial compounds. More specifically, Gram− pathogens emerged as the most exigent danger. In our continuing quest to search for novel antimicrobial molecules, alkaloids from marine fungi show great promise. However, current reports of such newly discovered alkaloids are often limited to cytotoxicity studies and, moreover, neglect to discuss the enigma of their biosynthesis. Yet, the latter is often a prerequisite to make them available through sufficiently efficient processes. This review aims to summarize novel alkaloids with promising antimicrobial properties discovered in the past five years and produced by marine fungi. Several discovery strategies are summarized, and knowledge gaps in biochemical production routes are identified. Finally, links between the structure of the newly discovered molecules and their activity are proposed. Since 2015, a total of 35 new antimicrobial alkaloids from marine fungi were identified, of which 22 showed an antibacterial activity against Gram− microorganisms. Eight of them can be classified as narrow-spectrum Gram− antibiotics. Despite this promising ratio of novel alkaloids active against Gram− microorganisms, the number of newly discovered antimicrobial alkaloids is low, due to the narrow spectrum of discovery protocols that are used and the fact that antimicrobial properties of newly discovered alkaloids are barely characterized. Alternatives are proposed in this review. In conclusion, this review summarizes novel findings on antimicrobial alkaloids from marine fungi, shows their potential as promising therapeutic candidates, and hints on how to further improve this potential.
Chromosomal integration of biosynthetic pathways for the biotechnological production of high-value chemicals is a necessity to develop industrial strains with a high long-term stability and a low production variability. However, the introduction of multiple transcription units into the microbial genome remains a difficult task. Despite recent advances, current methodologies are either laborious or efficiencies highly fluctuate depending on the length and the type of the construct. Here we present serine integrase recombinational engineering (SIRE), a novel methodology which combines the ease of recombinase-mediated cassette exchange (RMCE) with the selectivity of orthogonal att sites of the PhiC31 integrase. As a proof of concept, this toolbox is developed for Escherichia coli. Using SIRE we were able to introduce a 10.3 kb biosynthetic gene cluster on different locations throughout the genome with an efficiency of 100% for the integrating step and without the need for selection markers on the knock-in cassette.Next to integrating large fragments, the option for multitargeting, for deleting operons, as well as for performing in vivo assemblies further expand and proof the versatility of the SIRE toolbox for E. coli. Finally, the serine integrase PhiC31 was also applied in the yeast Saccharomyces cerevisiae as a marker recovery tool, indicating the potential and portability of this toolbox. K E Y W O R D SEscherichia coli, genomic integration, knock-in, PhiC31, serine integrase
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
The field of astrobiology aims to understand the origin of life on Earth and searches for evidence of life beyond our planet. Although there is agreement on some of the requirements for life on Earth, the exact process by which life emerged from prebiotic conditions is still uncertain, leading to various theories. In order to expand our knowledge of life and our place in the universe, scientists look for signs of life through the use of biosignatures, observations that suggest the presence of past or present life. These biosignatures often require up-close investigation by orbiters and landers, which have been employed in various space missions. Mars, because of its proximity and Earth-like environment, has received the most attention and has been explored using (sub)surface sampling and analysis. Despite its inhospitable surface conditions, Venus has also been the subject of space missions due to the presence of potentially habitable conditions in its atmosphere. In addition, the discovery of habitable environments on icy moons has sparked interest in further study. This article provides an overview of the origin of life on Earth and the astrobiology studies carried out by orbiters and landers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.