Many species are able to recognize objects, but it has been proven difficult to pinpoint and compare how different species solve this task. Recent research suggested to combine computational and animal modelling in order to obtain a more systematic understanding of task complexity and compare strategies between species. In the present study, we created a large multidimensional stimulus set and designed a visual categorization task partially based upon modelling with a convolutional deep neural network (cDNN). Experiments included rats (N = 11; 1115 daily sessions in total for all rats together) and humans (N = 50). Each species was able to master the task and generalize to a variety of new images. Nevertheless, rats and humans showed very little convergence in terms of which object pairs were associated with high and low performance, suggesting the use of different strategies. There was an interaction between species and whether stimulus pairs favoured early or late processing in a cDNN. A direct comparison with cDNN representations revealed that rat performance was best captured by late convolutional layers while human performance related more to the higher-up fully connected layers. These findings highlight the additional value of using a computational approach for the design of object recognition tasks. Overall, this computationally informed investigation of object recognition behaviour reveals a strong discrepancy in strategies between rodent and human vision.
Many species are able to recognize objects, but it has been proven difficult to pinpoint and compare how different species solve this task. Recent research suggested to combine computational and animal modelling in order to obtain a more systematic understanding of task complexity and compare strategies between species. In the present study, we created a large multidimensional stimulus set and designed a visual categorization task partially based upon modelling with a convolutional deep neural network (cDNN). Experiments included rats (N = 11; 1115 daily sessions in total for all rats together) and humans (N = 50). Each species was able to master the task and generalize to a variety of new images. Nevertheless, rats and humans showed very little convergence in terms of which object pairs were associated with high and low performance, suggesting the use of different strategies. There was an interaction between species and whether stimulus pairs favoured early or late processing in a cDNN. A direct comparison with cDNN representations revealed that rat performance was best captured by late convolutional layers while human performance related more to the higher-up fully connected layers. These findings highlight the additional value of using a computational approach for the design of object recognition tasks. Overall, this computationally informed investigation of object recognition behaviour reveals a strong discrepancy in strategies between rodent and human vision.
Many species are able to recognize objects, but it has been proven difficult to pinpoint and compare how different species solve this task. Recent research suggested to combine computational and animal modelling in order to obtain a more systematic understanding of task complexity and compare strategies between species. In the present study, we created a large multidimensional stimulus set and designed a visual categorization task partially based upon modelling with a convolutional deep neural network (cDNN). Experiments included rats (N = 11; 1115 daily sessions in total for all rats together) and humans (N = 50). Each species was able to master the task and generalize to a variety of new images. Nevertheless, rats and humans showed very little convergence in terms of which object pairs were associated with high and low performance, suggesting the use of different strategies. There was an interaction between species and whether stimulus pairs favoured early or late processing in a cDNN. A direct comparison with cDNN representations revealed that rat performance was best captured by late convolutional layers while human performance related more to the higher-up fully connected layers. These findings highlight the additional value of using a computational approach for the design of object recognition tasks. Overall, this computationally informed investigation of object recognition behaviour reveals a strong discrepancy in strategies between rodent and human vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.