The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. BaSrCoFeO as nano-powder displays unique features that allow a dynamic self-reconstruction of the material's surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.
We report the preparation and hydrogenation performance of a single-site palladium catalyst that was obtained by the anchoring of Pd atoms into the cavities of mesoporous polymeric graphitic carbon nitride. The characterization of the material confirmed the atomic dispersion of the palladium phase throughout the sample. The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles. Density functional theory calculations provided fundamental insights into the material structure and attributed the high catalyst activity and selectivity to the facile hydrogen activation and hydrocarbon adsorption on atomically dispersed Pd sites.
A current challenge faced in water electrolysis is the development of structure–activity relationships for understanding and improving IrOx-based catalysts for the oxygen evolution reaction (OER). We report a simple and scalable modified Adams fusion method for preparing highly OER active, chlorine–free iridium oxide nanoparticles of various size and shape. The applied approach allows for the effects of particle size, morphology, and the nature of the surface species on the OER activity of IrO2 to be investigated. Iridium oxide synthesized at 350 °C from Ir(acac)3, consisting of 1.7 ± 0.4 nm particles with a specific surface area of 150 m2 g–1, shows the highest OER activity (E = 1.499 ± 0.003 V at 10 A gox –1). Operando X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) studies indicate the presence of iridium hydroxo (Ir–OH) surface species, which are strongly linked to the OER activity. Preparation of larger IrO2 particles using higher temperatures results in a change of the particle morphology from spherical to rod-shaped particles. A decrease of the intrinsic OER activity was associated with the predominant termination of the rod-shape particles by highly ordered (110) facets in addition to limited diffusion within mesoporous features.
T he reduction of CO 2 emissions into the Earth's atmosphere is gaining legislative importance in view of its impact on the climate [1][2][3][4][5] . Reduction of the harmful effect of these emissions through reclamation of CO 2 is made attractive because CO 2 can be a zero-or even negative-cost carbon feedstock 6,7 . The conversion of renewably produced hydrogen and CO 2 into methane, or synthetic natural gas, over Ni is a solution that combines the potential to reduce CO 2 emissions with a direct answer to the temporal mismatch in renewable electricity production capacity and demand [8][9][10][11][12][13][14][15][16][17] . Chemical energy storage in the form of hydrogen production by electrolysis is a relatively mature technology; however, the required costly infrastructure, and inefficiencies in distribution and storage deem it inconvenient for large-scale application in the near future. Point-source CO 2 hydrogenation to methane represents an alternative approach with higher energy density. Furthermore, methane is more easily liquefied and can be stored safely in large quantities through infrastructures that already exist 18,19 . Power-to-gas (in this case methane) is thus actively considered as being capable of balancing electric grid stability, which will allow us to increase the renewable energy supply 20 .The search for fossil fuel alternatives, and application of a process such as that described above can arguably be achieved only with the help of advances in catalysis and the closely related field of nanomaterials. Continuous efforts in both fields have allowed us to make increasingly smaller and catalytically more active (metal) particles. However, it is already known that making progressively smaller supported catalyst particles does not necessarily linearly correspond to higher catalytic activity [21][22][23] . This phenomenon, where not all atoms in a supported metal catalyst have the same activity, is called structure sensitivity and is often attributed to the distinctly different chemistries on different lattice planes for π -bond activation in CO 2 , or σ -bond activation in, for example H 2 dissociation and C-H propagation 21,24 . The availability of stepped (less coordinated) versus terrace (more coordinated) sites on the surface of supported catalyst nanoparticles obviously changes with particle size, and atomic geometries become particularly interesting below 2 nm where, for example, π -bond activation is believed to not be able to occur 21 . While particle-size effects have been extensively studied for CO hydrogenation over Co 23,25 , the understanding of such structure sensitivity effects for these critical smaller metal particle sizes is lacking as sub-2-nm particles prove difficult to synthesize for first-row transition metals (Co, Fe and Ni). However, a particle-size effect for CO 2 hydrogenation is much less well established 26 .Here, we used a unique set of SiO 2 -supported Ni nanoparticles with diameters ranging from 1 to 7 nm in size, and show not only the existence of a distinct pa...
Methane can be converted to methanol over copper-exchanged mordenite at 200 °C. Methanol could be recovered at the end of the reactor. This multi-step reaction opens the possibility for methane to methanol conversion in a closed catalytic cyclic reaction system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.