Direct functionalization of methane in natural gas remains a key challenge. We present a direct stepwise method for converting methane into methanol with high selectivity (~97%) over a copper-containing zeolite, based on partial oxidation with water. The activation in helium at 673 kelvin (K), followed by consecutive catalyst exposures to 7 bars of methane and then water at 473 K, consistently produced 0.204 mole of CHOH per mole of copper in zeolite. Isotopic labeling confirmed water as the source of oxygen to regenerate the zeolite active centers and renders methanol desorption energetically favorable. On the basis of in situ x-ray absorption spectroscopy, infrared spectroscopy, and density functional theory calculations, we propose a mechanism involving methane oxidation at Cu oxide active centers, followed by Cu reoxidation by water with concurrent formation of hydrogen.
Despite the large number of disparate approaches for the direct selective partial oxidation of methane, none of them has translated into an industrial process. The oxidation of methane to methanol is a difficult, but intriguing and rewarding, task as it has the potential to eliminate the prevalent natural gas flaring by providing novel routes to its valorization. This Review considers the synthesis of methanol and methanol derivatives from methane by homogeneous and heterogeneous pathways. By establishing the severe limitations related to the direct catalytic synthesis of methanol from methane, we highlight the vastly superior performance of systems which produce methanol derivatives or incorporate specific measures, such as the use of multicomponent catalysts to stabilize methanol. We thereby identify methanol protection as being indispensable for future research on homogeneous and heterogeneous catalysis.
In the recent years methane has become increasingly abundant. However, transportation costs are high and methane recovered as side product is often flared rather than valorized. The chemical utilization of methane is highly challenging and currently mainly based on the cost-intensive production of synthesis gas and its conversion. Alternative routes have been discovered in academia, though high temperatures are mostly required. However, the direct conversion of methane to methanol is an exception. It can already be carried out at comparably low temperatures. It is challenging that methanol is more prone to oxidation than methane, which makes high selectivities at moderate conversions difficult to reach. Decades of research for the direct reaction of methane and oxygen did not yield a satisfactory solution for the direct partial oxidation toward methanol. When changing the oxidant from oxygen to hydrogen peroxide, high selectivities can be reached at rather low conversions, but the cost of hydrogen peroxide is comparably high. However, major advancements in the field were introduced by converting methane to a more stable methanol precursor. Most notable is the conversion of methane to methyl bisulfate in the presence of a platinum catalyst. The reaction is carried out in 102% sulfuric acid using SO as the oxidant. This allows for oxidation of the platinum catalyst and prevents the in situ hydrolysis of methyl bisulfate toward the less stable methanol. With a slightly different motif, the stepped conversion of methane to methanol over copper-zeolites was developed a decade ago. The copper-zeolite is first activated in oxygen at 450 °C, and then cooled to 200 °C and reacts with methane in the absence of oxygen, thus protecting a methanol precursor from overoxidation. Subsequently methanol can be extracted with water. Several active copper-zeolites were found, and the active sites were identified and discussed. For a long time, the process was almost unchanged. Lately, we implemented online steam extraction rather than off-line extraction with liquid water, which enables execution of successive cycles. While recently we reported the isothermal conversion by employing higher methane pressures, carrying out the process according to prior art only yielded neglectable amounts of methane. Using a pressure <40 bar methane gave higher yields under isothermal conditions at 200 °C than most yields in prior reports. The yield, both after high temperature activation and under isothermal conditions at 200 °C, increased monotonously with the pressure. With this account we show that the trend can be represented by a Langmuir model. Thus, the pressure dependence is governed by methane adsorption. We show that the isothermal and the high temperature activated processes have different properties and should be treated independently, from both an experimental and a mechanistic point of view.
Methane can be converted to methanol over copper-exchanged mordenite at 200 °C. Methanol could be recovered at the end of the reactor. This multi-step reaction opens the possibility for methane to methanol conversion in a closed catalytic cyclic reaction system.
Direct partial oxidation of methane into methanol is a cornerstone of catalysis. The stepped conversion of methane into methanol currently involves activation at high temperature and reaction with methane at decreased temperature, which limits applicability of the technique. The first implementation of copper-containing zeolites in the production of methanol directly from methane is reported, using molecular oxygen under isothermal conditions at 200 °C. Copper-exchanged zeolite is activated with oxygen, reacts with methane, and is subsequently extracted with steam in a repeated cyclic process. Methanol yield increases with methane pressure, enabling reactivity with less reactive oxidized copper species. It is possible to produce methanol over catalysts that were inactive in prior state of the art systems. Characterization of the activated catalyst at low temperature revealed that the active sites are small clusters of copper, and not necessarily di- or tricopper sites, indicating that catalysts can be designed with greater flexibility than formerly proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.