Summary Mycobacterium is often isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil as degraders of PAHs. In model systems, Mycobacterium shows attachment to the PAH substrate source, which is considered to be a particular adaptation to low bioavailability as it results into increased substrate flux to the degraders. To examine whether PAH-degrading Mycobacterium in real PAH-contaminated soils, in analogy with model systems, are preferentially associated with PAH-enriched soil particles, the distribution of PAHs, of the PAH-mineralizing capacity and of Mycobacterium over different fractions of a soil with an aged PAH contamination was investigated. The clay fraction contained the majority of the PAHs and showed immediate pyrene- and phenanthrene-mineralizing activity upon addition of (14)C-labelled pyrene or phenanthrene. In contrast, the sand and silt fractions showed a lag time of 15-26 h for phenanthrene and 3-6 days for pyrene mineralization. The maximum pyrene and phenanthrene mineralization rates of the clay fraction expressed per gram fraction were three to six times higher than those of the sand and silt fractions. Most-probable-number (MPN)-polymerase chain reaction demonstrated that Mycobacterium represented about 10% of the eubacteria in the clay fraction, while this was only about 0.1% in the sand and silt fractions, indicating accumulation of Mycobacterium in the PAH-enriched clay fraction. The Mycobacterium community composition in the clay fraction represented all dominant Mycobacterium populations of the bulk soil and included especially species related to Mycobacterium pyrenivorans, which was also recovered as one of the dominant species in the eubacterial communities of the bulk soil and the clay fraction. Moreover, Mycobacterium could be identified among the major culturable PAH-degrading populations in both the bulk soil and the clay fraction. The results demonstrate that PAH-degrading mycobacteria are mainly associated with the PAH-enriched clay fraction of the examined PAH-contaminated soil and hence, that also in the environmental setting of a PAH-contaminated soil, Mycobacterium might experience advantages connected to substrate source attachment.
A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56μm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.