Rapid information processing in the human brain is vital to survival in a highly dynamic environment. The key tool humans use to exchange information is spoken language, but the exact speed of the neuronal mechanisms underpinning speech comprehension is still unknown. Here we investigate the time course of neuro-lexical processing by analysing neuromagnetic brain activity elicited in response to psycholinguistically and acoustically matched groups of words and pseudowords. We show an ultra-early dissociation in cortical activation elicited by these stimulus types, emerging ~50 ms after acoustic information required for word identification first becomes available. This dissociation is the earliest brain signature of lexical processing of words so far reported, and may help explain the evolutionary advantage of human spoken language.
Linking brain and behavior is one of the great challenges in cognitive neuroscience. Ultimately, we want to understand how the brain processes information to guide every-day behavior. However, most neuroscientific studies employ very simplistic experimental paradigms whose ecological validity is doubtful. Reading is a case in point, since most neuroscientific studies to date have used unnatural word-by-word stimulus presentation and have often focused on single word processing. Previous research has therefore actively avoided factors that are important for natural reading, such as rapid self-paced voluntary saccadic eye movements. Recent methodological developments have made it possible to deal with associated problems such as eye movement artefacts and the overlap of brain responses to successive stimuli, using a combination of eye-tracking and neuroimaging. A growing number of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are successfully using this methodology. Here, we provide a proof-of-concept that this methodology can be applied to combined EEG and magnetoencephalography (MEG) data. Our participants naturally read 4-word sentences that could end in a plausible or implausible word while eye-tracking, EEG and MEG were being simultaneously recorded. Eye-movement artefacts were removed using independent-component analysis. Fixation-related potentials and fields for sentence-final words were subjected to minimum-norm source estimation. We detected an N400-type brain response in our EEG data starting around 200 ms after fixation of the sentence-final word. The brain sources of this effect, estimated from combined EEG and MEG data, were mostly located in left temporal lobe areas. We discuss the possible use of this method for future neuroscientific research on language and cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.