The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on ‘Black holes, Gravitational waves and Fundamental Physics’.
Advanced methods for computing perturbative, quantum-gravitational scattering amplitudes show great promise for improving our knowledge of classical gravitational dynamics. This is especially true in the weak-field and arbitrary-speed (post-Minkowskian, PM) regime, where the conservative dynamics at 3PM order has been recently determined for the first time, via an amplitude calculation. Such PM results are most relevantly applicable to relativistic scattering (unbound orbits), while bound/inspiraling binary systems, the most frequent sources of gravitational waves for the LIGO and Virgo detectors, are most suitably modeled by the weak-field and slow-motion (post-Newtonian, PN) approximation. Nonetheless, it has been suggested that PM results can independently lead to improved modeling of bound binary dynamics, especially when taken as inputs for effective-one-body (EOB) models of inspiraling binaries. Here, we initiate a quantitative study of this possibility, by comparing PM, EOB and PN predictions for the binding energy of a two-body system on a quasi-circular inspiraling orbit against results of numerical relativity (NR) simulations. The binding energy is one of the two central ingredients (the other being the gravitational-wave energy flux) that enters the computation of gravitational waveforms employed by LIGO and Virgo detectors, and for (quasi-)circular orbits it provides an accurate diagnostic of the conservative sector of a model. We find that, whereas 3PM results do improve the agreement with NR with respect to 2PM (especially when used in the EOB framework), it is crucial to push PM calculations at higher orders if one wants to achieve better performances than current waveform models used for LIGO/Virgo data analysis.
We present the first numerical calculation of the (local) metric perturbation produced by a small compact object moving on an eccentric equatorial geodesic around a Kerr black hole, accurate to first order in the mass ratio. The procedure starts by first solving the Teukolsky equation to obtain the Weyl scalar ψ4 using semi-analytical methods. The metric perturbation is then reconstructed from ψ4 in an (outgoing) radiation gauge, adding the appropriate non-radiative contributions arising from the shifts in mass and angular momentum of the spacetime.As a demonstration we calculate the generalized redshift U as a function of the orbital frequencies Ωr and Ω φ to linear order in the mass ratio, a gauge invariant measure of the conservative corrections to the orbit due to self-interactions. In Schwarzschild, the results surpass the existing result in the literature in accuracy, and we find new estimates for some of the unknown 4PN and 5PN terms in the post-Newtonian expansion of U . In Kerr, we provide completely novel values of U for eccentric equatorial orbits. Calculation of the full self-force will appear in a forthcoming paper. * M.vandeMeent@soton.ac.uk † a.g.shah@soton.ac.uk 1. Homogeneous solutions (generic case ωmn = 0 and ma = 0)
In this work we present the first calculation of the gravitational self-force on generic bound geodesics in Kerr spacetime to first order in the mass-ratio. That is, the local correction to equations of motion for a compact object orbiting a larger rotating black hole due to its own impact on the gravitational field. This includes both dissipative and conservative effects. Our method builds on and extends earlier methods for calculating the gravitational self-force on equatorial orbits. In particular we reconstruct the local metric perturbation in the outgoing radiation gauge from the Weyl scalar ψ4, which in turn is obtained by solving the Teukolsky equation using semi-analytical frequency domain methods. The gravitational self-force is subsequently obtained using (spherical) l-mode regularization.We test our implementation by comparing the large l-behaviour against the analytically known regularization parameters. In addition we validate our results be comparing the long-term average changes to the energy, angular momentum, and Carter constant to changes to these constants of motion inferred from the gravitational wave flux to infinity and down the horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.