Two new polymeric materials (polymers A and B) containing covalently bound iodine were prepared. These polymers were evaluated with respect to their possible use as radiopaque implant biomaterials--that is, materials that are visible in a noninvasive manner using routine X-ray absorption imaging techniques. Polymer A is a copolymer of methyl methacrylate (MMA) and 1 (80 and 20 mol%, respectively). Polymer B was prepared from MMA, 1, and 2-hydroxyethyl methacrylate (HEMA) (mol ratio 65:20:15, respectively). Compound 1 was synthesized from 4-iodophenol and methacryloyl chloride. The resulting polymers were characterized with GPC, DSC, NMR, and by measuring both the advancing and receding contact angles. Thrombogenicity of the polymers was determined by an in vitro thrombin generation test procedure. The maximum concentration of free thrombin was 76 +/- 1 nM for polymer A, and 64 +/- 3 nM for polymer B. The lag times (i.e., time onset of thrombin generation) were 392 seconds for polymer A and 553 seconds for polymer B. For PVC-T, which is known as a passive material, a lag time of 583 seconds was found. This indicates that polymer B is comparable to PVC-T, and more passive than polymer A. Polymer A exhibited minor activation of platelets. Polymer B did not induce platelet activation at all. The polymers exhibited, even as fibers with a diameter of ca. 0.3 mm, good radiopacity with routine imaging X-ray techniques in the clinic.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.