The core-collapse supernova (CCSN) mechanism is fundamentally three-dimensional with instabilities, convection, and turbulence playing crucial roles in aiding neutrino-driven explosions. Simulations of CCNSe including accurate treatments of neutrino transport and sufficient resolution to capture key instabilities remain amongst the most expensive numerical simulations in astrophysics, prohibiting large parameter studies in 2D and 3D. Studies spanning a large swath of the incredibly varied initial conditions of CCSNe are possible in 1D, though such simulations must be artificially driven to explode. We present a new method for including the most important effects of convection and turbulence in 1D simulations of neutrino-driven CCSNe, called Supernova Turbulence In Reduced-dimensionality, or STIR. Our new approach includes crucial terms resulting from the turbulent and convective motions of the flow. We estimate the strength of convection and turbulence using a modified mixing length theory (MLT) approach introducing a few free parameters to the model which are fit to the results of 3D simulations. For sufficiently large values of the mixing length parameter, turbulence-aided neutrino-driven explosions are obtained. We compare the results of STIR to high-fidelity 3D simulations and perform a parameter study of CCSN explosion using 200 solar-metallicity progenitor models from 9 to 120 M . We find that STIR is a better predictor of which models will explode in multidimensional simulations than other methods of driving explosions in 1D. We also present a preliminary investigation of predicted observable characteristics of the CCSN population from STIR, such as the distributions of explosion energies and remnant masses.
We have made core-collapse supernova simulations that allow oscillations between electron neutrinos (or their antiparticles) with right-handed sterile neutrinos. We have considered a range of mixing angles and sterile neutrino masses including those consistent with sterile neutrinos as a dark matter candidate. We examine whether such oscillations can impact the core bounce and shock reheating in supernovae. We identify the optimum ranges of mixing angles and masses that can dramatically enhance the supernova explosion by efficiently transporting electron antineutrinos from the core to behind the shock, where they provide additional heating leading to much larger explosion kinetic energies. We show that this effect can cause stars to explode that otherwise would have collapsed. We find that an interesting periodicity in the neutrino luminosity develops due to a cycle of depletion of the neutrino density by conversion to sterile neutrinos that shuts off the conversion, followed by a replenished neutrino density as neutrinos transport through the core.
With the advent of modern neutrino and gravitational wave (GW) detectors, the promise of multimessenger detections of the next galactic core-collapse supernova (CCSN) has become very real. Such detections will give insight into the CCSN mechanism and the structure of the progenitor star, and may resolve longstanding questions in fundamental physics. In order to properly interpret these detections, a thorough understanding of the landscape of possible CCSN events, and their multimessenger signals, is needed. We present detailed predictions of neutrino and GW signals from 1D simulations of stellar core collapse, spanning the landscape of core-collapse progenitors from 9 to 120 M ⊙. In order to achieve explosions in 1D, we use the Supernova Turbulence In Reduced-dimensionality model, which includes the effects of turbulence and convection in 1D supernova simulations to mimic the 3D explosion mechanism. We study the GW emission from the 1D simulations using an astroseismology analysis of the protoneutron star. We find that the neutrino and GW signals are strongly correlated with the structure of the progenitor star and remnant compact object. Using these correlations, future detections of the first few seconds of neutrino and GW emission from a galactic CCSN may be able to provide constraints on stellar evolution independent of preexplosion imaging and the mass of the compact object remnant prior to fallback accretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.