Water quality indices are suitable tools used for assessing water quality because of their capacity to reduce a large number of water quality indicators into one value which defines the water quality class. In this study, Water Quality Index (WQI), Water Pollution Index (WPI) and Canadian Council of Ministers of the Environment Water Quality Index (CCME-WQI) were applied in order to evaluate the seasonal and spatial variation of the water quality in the Romanian Lower Danube sector. Fourteen physico-chemical parameters, i.e., pH, DO, BOD5, COD, N-NH4+, N-NO3−, N-NO2−, N-total, P-total, SO42−, Cl−, Fe-total, Zn2+ and Cr-total, were monitored along the Danube course (on a distance of about 120 km), during the four seasons between the autumn of 2018 and the summer of 2019 in order to calculate the three indices mentioned above. Indices results showed that the water analysed was ranked into different water quality classes, although the same dataset was used. These differences were due to the contribution of each parameter taken into account in the calculation formula. Thus, the WQI scores were mostly influenced by those parameters whose maximum allowable concentration was low (e.g., heavy metals, N-NO2−), while the WPI and CCME-WQI scores were influenced by those parameters which exceeded the maximum allowable concentration (BOD5, DO, COD, N-NO3−, N-NO2−). Based on the WQI results, the water was ranked into quality classes II and III. WPI and CCME-WQI assessed water only in quality class II, with one exception in the case of CCME-WQI when water was ranked into quality class III. The temporal assessment identified the seasons in which the water quality was lower, namely summer and autumn. The variation of the indices values between the sampling stations demonstrates the existence of pollution sources in the study area. Moreover, the indices results illustrated the contribution of the main tributaries (Rivers Siret and Prut) to the Danube River water quality. The appropriate applicability of the three indices was also discussed in this study.
It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.
At present, the most commonly used method to evaluate the quality of a water stream is the application of the Water Quality Index, which may be determined by using different methods. The main purpose of this study is to describe four methods for calculating the Water Quality Index with their advantages and disadvantages: NFS-WQI (National Sanitation Foundation-Water Quality Index), OWQI (Oregon Water Quality Index), WAWQI (Weighted Arithmetic Water Quality Index) and CCME-WQI (Canadian Council of Ministers of the Environment-Water Quality Index). Choosing one of the four methods mentioned above should be based on the study purpose and on the nature of the water stream. These indices have already been used to determine the quality of the Danube water in the all the riverine states. Moreover, the present research reveals that two methods are proved to be useful in determining the Danube water quality, namely: WAWQI (Weighted Arithmetic Water Quality Index) and CCME-WQI (Canadian Council of Ministers of the Environment-Water Quality Index).
The Siret River is one of the most important tributaries of the Danube River in the Romanian territory. With a total length of 596 km in this territory, the confluence section of the Siret River with the Danube represents an area where major floods have occurred over time. In the last 50 years, over 20 floods have been recorded in the lower area of the Siret River; and the most recent important flood, which happened in 2010, had a negative impact on the local population, the environment, and the economy. Although it is a buffer zone, the Danube River has a significant impact on the discharge rate of the Siret River. Since few studies have been conducted on the prediction of flooding in the lower area of the Siret River, the present study aims at presenting the most important steps to be taken for designing risk and hazard maps for floods, which could be further applied to other rivers. The confluence of the Siret River with the Danube, a distance of 35 km upstream, was chosen as a study area. Techniques of topographic and bathymetric measurements were combined in order to design the risk and hazard maps for floods in this area and to improve the digital terrain model of the minor riverbed for the studied river area. The 1D hydrodynamic model of the HEC-RAS software was used in this research for developing the flood risk and flood hazard maps. The hazard and risk maps were generated based on 10%, 5%, and 1% flood scenarios, which are in accordance with Floods Directive 2007/60/EC; no historical data were available for the 0.1% scenarios. Thus, in a flood scenario that can occur every 100 years, about 9500 inhabitants are vulnerable at a medium flood risk. In this scenario, over 19.5 km of road infrastructure, about 16.5 km of railways, eight cultural heritage indicators, and three environmental indicators may be affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.