The purpose of this study is to develop a reliable method of functionalizing poly(ethylene terephthalate) with bioactive polymers to produce a "biointegrable" artificial anterior cruciate ligament. Radical graft polymerization of the sodium salt of styrene sulfonate (NaSS) onto poly(ethylene terephthalate) (PET) films was performed using the "grafting from" technique. Prior to the grafting, the surfaces of poly(ethylene terephthalate) films were activated by ozonation to generate peroxide and hydroperoxide reactive species on the PET film surfaces. The radical polymerization of NaSS was initiated by thermal decomposition of the hydroperoxides. The grafted PET surfaces were characterized by a toluidin blue colorimetric method, X-ray photoelectron spectroscopy, contact angle measurements, and atomic force microscopy. The influence of ozonation time, monomer concentration, and temperature on NaSS grafting ratios was examined. A total of 30 min of ozonation followed by grafting from a 15% NaSS solution at 70 degrees C for 90 min or more resulted in attachment of poly(NaSS) chains to the PET film surfaces.
We have developed glucose and lactate ultramicroelectrode (UME) biosensors based on glucose oxidase and lactate oxidase (with enzymes immobilized onto Pt UMEs by either electropolymerization or casting) for scanning electrochemical microscopy (SECM), and have determined their sensitivity to glucose and lactate, respectively. The results of our evaluations reveal different advantages for sensors constructed by each method: improved sensitivity and shorter manufacturing time for hand-casting, and increased reproducibility for electropolymerization. We have acquired amperometric approach curves (ACs) for each type of manufactured biosensor UME, and these ACs can be used as a means of positioning the UME above a substrate at a known distance. We have used the glucose biosensor UMEs to record profiles of glucose uptake above individual fibroblasts. Likewise, we have employed the lactate biosensor UMEs for recording the lactate production above single cancer cells with the SECM. We also show that oxygen respiration profiles for single cancer cells do not mimic cell topography, but are rather more convoluted, with a higher respiration activity observed at the points where the cell touches the Petri dish. These UME biosensors, along with the application of others already described in the literature, could prove to be powerful tools for mapping metabolic analytes, such as glucose, lactate and oxygen, in single cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.