This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.
This study aims to provide an updated survey of the main synthesis methods of copper oxide (CuO) nanoparticles in order to obtain tailored nanosystems for various biomedical applications. The synthesis approach significantly impacts the properties of such nanoparticles and these properties in turn have a significant impact on their biomedical applications. Although not widely investigated as an efficient drug delivery system, CuO nanoparticles have great biological properties including effective antimicrobial action against a wide range of pathogens and also drug resistant bacteria. These properties have led to the development of various approaches with direct applications to the biomedical field, such as tailored surfaces with antimicrobial effect, wound dressings and modified textiles. It is also believed that these nanosystems could represent efficient alternatives in the development of smart systems utilized both for the detection of pathogens and for the treatment of infections.
Carbonated hydroxyapatite derivatives (CHAp) and its metallic derivatives (Ag, Sr, Ba, K, Zn) have been prepared and characterized in this paper and their coating capacity on some model stone samples have been evaluated and discussed. These compounds were characterized by using several analytical tools, including X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), to determine the purity of the CHAp sample. The XRD and FTIR results confirmed the presence of AB-carbonated type CHAp. The thermal analysis (TGA) established two stages of weight loss that occured during the heating process: The first weight loss between 30–225 °C corresponding to the partial carbonate release from OH-channel and the second one between 226–700 °C, corresponding to some thermal reactions, possibly to the generation of calcium phosphate. The efficiency and suitability of these products on model stone samples were evaluated by monitoring the resistance to artificial weather (freeze–thaw), and pore structure changes (surface area, pore volume, pore diameter). Meanwhile, optical microscopy (OM) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS) techniques showed the particles size and surface morphology of the samples, as well as information on its chemical composition. Also, the compressive strength of these new compounds as coatings revealed a homogeneity and strengthen of these model stone samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.