Abstract. The emerging two-dimensional (2D) materials exhibit a wide range of electronic properties, ranging from insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ), to semi-metallic graphene. The plethora of 2D materials together with their heterostructures, which are free of the traditional "lattice mismatch" issue, brings new opportunities for exploring novel optical phenomena. In this review, we first discuss the optical properties and applications of a variety of 2D materials, followed by two different approaches to enhance their interactions with light: through their integration with external photonic structures and through their intrinsic polaritonic resonances. Finally, we cover a narrow bandgap layered material, black phosphorus, which serendipitously bridges the zero gap graphene and the relatively large-bandgap TMDCs such as MoS 2 and WSe 2 . The combination of these materials and the approaches for enhancing light-matter interaction offers the promise of scientific discoveries and nanophotonics technologies across a wide range of electromagnetic spectrum.
Two-dimensional (2D) materials, such as molybdenum disulfide (MoS 2 ), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS 2 allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors and photodetectors made from few-layer MoS 2 show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multi-stage circuits and logic building blocks on MoS 2 to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between two to twelve transistors seamlessly integrated side-byside on a single sheet of bilayer MoS 2 . Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions. Keywords: molybdenum disulfide (MoS 2 ), transition metal dichalcogenides (TMD), Two-dimensional (2D)electronics, integrated circuits, ring oscillator.2 Two-dimensional (2D) materials, such as molybdenum disulfide (MoS 2 ) 1 and other members of the transition metal dichalcogenides family, represents the ultimate scaling of material dimension in the vertical direction. Nano-electronic devices built on 2D materials offer many benefits for further miniaturization beyond Moore's Law 2,3 and as a high-mobility option in the emerging field of large-area and low-cost electronics that is currently dominated by low-mobility amorphous silicon 4 and organic semiconductors 5,6 . MoS 2 , a 2D semiconductor material, is also attractive as a potential complement to graphene 7,8,9 for constructing digital circuits on flexible and transparent substrates, while its 1.8 eV bandgap 10,11 is advantageous over silicon for suppressing the source-to-drain tunneling at the scaling limit of transistors 12 . Molybdenum disulfide (MoS 2 ) is a layered semiconductor from the transition metal dichalcogenides material family (TMD), MX 2 (M=Mo, W; X=S, Se, Te) 10,11,19,20 . A single molecular layer of MoS 2 consists of a layer of Mo atoms sandwiched between two layers of sulfur atoms by covalent bonds 10 . The strong intra-layer covalent bonds confer MoS 2 crystals excellent mechanical strength, thermal stability up to 1090 C in inert environment 21 , and a surface free of dangling bonds. On the other hand, the weak inter-layer Van der Waal's force allows single-or fewlayer MoS 2 thin films to be created through micro-mechanical cleavage technique 22 and through anisotropic 2D 3 growth by chemical vapor deposition 23,24 . This unique property of MoS 2 , and 2D ...
Free-standing silicene, a silicon analogue of graphene, has a buckled honeycomb lattice and, because of its Dirac bandstructure combined with its sensitive surface, offers the potential for a widely tunable two-dimensional monolayer, where external fields and interface interactions can be exploited to influence fundamental properties such as bandgap and band character for future nanoelectronic devices. The quantum spin Hall effect, chiral superconductivity, giant magnetoresistance and various exotic field-dependent states have been predicted in monolayer silicene. Despite recent progress regarding the epitaxial synthesis of silicene and investigation of its electronic properties, to date there has been no report of experimental silicene devices because of its air stability issue. Here, we report a silicene field-effect transistor, corroborating theoretical expectations regarding its ambipolar Dirac charge transport, with a measured room-temperature mobility of ∼100 cm(2) V(-1) s(-1) attributed to acoustic phonon-limited transport and grain boundary scattering. These results are enabled by a growth-transfer-fabrication process that we have devised--silicene encapsulated delamination with native electrodes. This approach addresses a major challenge for material preservation of silicene during transfer and device fabrication and is applicable to other air-sensitive two-dimensional materials such as germanene and phosphorene. Silicene's allotropic affinity with bulk silicon and its low-temperature synthesis compared with graphene or alternative two-dimensional semiconductors suggest a more direct integration with ubiquitous semiconductor technology.
We demonstrate a controlled growth of nitrogen-doped graphene layers by liquid precursor based chemical vapor deposition (CVD) technique. Nitrogen-doped graphene was grown directly on Cu current collectors and studied for its reversible Li-ion intercalation properties. Reversible discharge capacity of N-doped graphene is almost double compared to pristine graphene due to the large number of surface defects induced due to N-doping. All the graphene films were characterized by Raman spectroscopy, transmission electron microscopy, and X-ray photoemission spectroscopy. Direct growth of active electrode material on current collector substrates makes this a feasible and efficient process for integration into current battery manufacture technology.
In this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gate oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. Finally, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.