Rockfalls evolve rapidly and unpredictably in mountain environments and can cause considerable losses to human societies, structures, economical activities, and also natural and historical heritage. Rockfall risk analyses are complex and multi-scale processes involving several disciplines and techniques. This complexity is due to the main features of rockfall phenomena, which are extremely variable over space and time. Today, a considerable number of methods exists for protecting land, as well as assessing and managing the risk level. These methodologies are often very different from each other, depending on the data required, the purposes of the analysis, and the reference scale adopted, i.e., the analysis level of detail. Nevertheless, several questions still remain open with reference to each phase of the hazard and risk process. This paper is devoted to a general overview of existing risk estimation methodologies and a critical analysis of some open questions with the aim of highlighting possible further research topics. A typical risk assessment framework is exemplified by analyzing a real case study. Each step of the process is treated at both the detailed and the large scale in order to highlight the main characteristics of each level of detail.
Background: Tailings dams are made up of mining residue deposits, and they represent a high risk, in terms of mechanical instability. In the event of collapse, the tailings in such dams may be released and flow over long distances, with the potential risk of extensive damage to property and life. The traditional geotechnical assessment of tailings facilities has mainly concentrated on the stability of tailings dams, while relatively few studies have investigated the flow of tailings released after dam failure. In this context, it is possible to state that, if the complex rheological behaviour of the tailings material is captured correctly during the flow, numerical modelling can be used to contribute to a better comprehension of the flow characteristics and for the assessment of the possible extension of the impact area. Results: Considering the wide range of possible rheological behaviour that tailings flows can assume (from laminar to turbulent), this paper presents the new version of a computer model, which was designed to simulate the motion of rapid flow movements across 3D terrain. This new version integrates the existing rheological kernel (Frictional, Voellmy) with two new rheological laws (Bingham and Turbulent), and adds the possibility of changing the rheological properties of the flowing mass during the propagation process. The code has been applied to the disastrous flow that was caused by the failure of a pair of tailings impoundments in the Stava Creek Valley (Italy) in 1985. Since different interpretations on this flow behaviour already exist in literature, and since a large number of changes in the rheological values along the run-out path have been proposed to recreate its dynamics, new simulations, carried out with different rheological combinations, are presented and discussed here in order to obtain a better understanding of the flow dynamics and to identify the rheology that reproduces the phenomenon that occurred with the fewest possible changes in the rheological values along the runout path. The latter aspect is particularly important when numerical analyses are used for prediction purposes. Conclusions: The great rheological flexibility of the new code has allowed the Voellmy rheology and a combination of its parameters to be identified as the most suitable to describe the Stava flow, even where the run-out path presented critical characteristics.
Retention barriers are a common countermeasure for mitigating the hazards associated with debris flows. With the aim to regulate sediment transport and retain large boulders, which have the potential to be highly destructive, openings are nowadays embedded in the barrier body. The rational design of the size and spacing of these outlets is a non-trivial, and still open, issue. Nevertheless, its solution is necessary in order to control the clogging process and consequently guarantee the effectiveness and efficiency of the barrier. In this paper, an enhanced numerical model, based on the discrete-element method, is presented, validated and proposed to analyse the interaction between dry, granular flows and barriers with a single outlet (slit-check dams). The lower and upper values of the outlet size that causes clogging of the outlet are identified. These are found to be a function of the channel inclination and the frictional properties of the grains. There is a range of outlet sizes that promotes slow and progressive clogging. The conditions necessary for this condition to occur are determined. This allows the barrier to perform an energy-breaking function for a longer time and requires less maintenance after a debris flow event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.