The transition toward more sustainable food systems, which already represents a central element of the European Farm to Fork and Green Deal strategies, could be an effective measure to contribute to global decarbonization and greenhouse gas (GHGs) reduction goals; concurrently, it could improve the health status and nutrition of the global population. In this context, the Mediterranean diet (MD) could play a considerable role, as it is generally recognized as a more balanced, healthy, and sustainable eating pattern than Western consumption patterns, which are characterized by excess food and high energy content, thus causing undesirable effects on both human health and the environment. Although traditionally linked to MD, Italy sees relatively moderate adherence by its citizens, as they consume about +75% of the daily caloric intake recommended by MD. Therefore, this study aims to quantitatively assess the potential environmental, economic, and health impacts of this lower adherence to MD by Italians. Current Italian Food Patterns (CIFP) in 2019 were analyzed and compared to the MD recommended amounts through a Life Cycle Thinking (LCT) approach (LCA) and carbon footprint (CF) analysis. The results show that CIFP, compared to MD, has +133% greater impacts on the environmental macro-area, +100% greater impacts on the human health macro-area, and +59% greater impacts on the economic macro-area (with annual fossil and mineral resource savings of $53.35 per person, $3.2 billion per year). The analysis also shows that CIFP has a CF of 6.54 × 101 kg CO2 eq, +142% over MD (2.7 × 101 kg CO2 eq), resulting in a lower environmental impact of the Mediterranean diet.
Purpose The study’s objective is to assess the environmental performance of rice production in Northern Italy, in particular in Piedmont, the first Italian and European district for the rice-growing area, and thus identify the most critical hotspots and agricultural processes. In particular, as a case study, a farm located in Vercelli (VC) has been chosen. Subsequently, the study results were compared with other different cultivation practices to evaluate the most sustainable choice. Methods The application of the LCA has been performed, highlighting the phases of rice production that have the most significant impact. Then, uncertainty and sensitivity analyses have been made to estimate the robustness of the results and assess the influence of changing some input variables on emission reduction. Finally, multivariate statistical, specifically a principal component analysis (PCA), was conducted to aid the interpretation of the output dataset of this case study. LCA, uncertainty analysis, and sensitivity analysis were performed with SimaPro 9.2.0, using ReCiPe 2016 Midpoint (H) methodology, and PCA with R software. Results and discussions The hotspot with the highest environmental load is irrigation, which compared to the other phases impacts more in 15 out of 18 categories, including 12 with impacts greater than + 75%. This is because irrigation causes direct impacts, related to the methanogenesis in rice fields, but also indirect impacts related mainly to the production of the energy mix required to move the large masses of irrigation water. Therefore, different water management systems were compared and results show that the irrigation systems based on intermittent paddy submergence (DSI) could result in − 40% lower impacts, resulting to be the preferable technique over the other irrigation systems analyzed, including the traditional one used in this study. Conclusions In order to reduce the environmental impacts related to the irrigation process, a water management system characterized by intermittent flooding of the paddy field (DSI) could be used as it reduces the environmental impacts the most (− 40%), while the least suitable system is one characterized by continuous flooding without drought periods, as it causes the highest impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.