Dairy pastoralism is integral to contemporary and past lifeways on the eastern Eurasian steppe, facilitating survival in agriculturally challenging environments. While previous research has indicated that ruminant dairy pastoralism was practiced in the region by c. 1300 BC, the origin, extent and diversity of this custom remains poorly understood. Here we analyze ancient proteins from human dental calculus recovered from geographically diverse locations across Mongolia and spanning 5,000 years in time. We present the earliest evidence for dairy consumption on the eastern Eurasian steppe by c. 3000 BC, and the later emergence of horse milking at c. 1200 BC, concurrent with the first evidence for horse riding. We argue that ruminant dairying contributed to the demographic success of Bronze Age Mongolian populations, and that the origins of traditional horse dairy products in eastern Eurasia are closely tied to the regional emergence of mounted herding societies during the late second millennium BC.
Africa hosts the greatest human genetic diversity globally, but legacies of ancient population interactions and dispersals across the continent remain understudied. Here, we report genome-wide data from 20 ancient sub-Saharan African individuals, including the first reported ancient DNA from the DRC, Uganda, and Botswana. These data demonstrate the contraction of diverse, once contiguous hunter-gatherer populations, and suggest the resistance to interaction with incoming pastoralists of delayed-return foragers in aquatic environments. We refine models for the spread of food producers into eastern and southern Africa, demonstrating more complex trajectories of admixture than previously suggested. In Botswana, we show that Bantu ancestry post-dates admixture between pastoralists and foragers, suggesting an earlier spread of pastoralism than farming to southern Africa. Our findings demonstrate how processes of migration and admixture have markedly reshaped the genetic map of sub-Saharan Africa in the past few millennia and highlight the utility of combined archaeological and archaeogenetic approaches.
The cemetery is located in the south-west of Pottenbrunn, on plot "Steinfeld" (15°41´05"/48°13´55"). Discovered in 1930, it had already yielded objects dating to the early La Tène period. In 1981, road construction revealed further finds which initiated rescue excavations by the Bundesdenkmalamt (State Office for Protection of Historical Monuments) under the guidance of J.-W. Neugebauer (Ramsl 2002a(Ramsl , 13) in 1981(Ramsl and 1982. A total of 42 graves with 45 burials (single and double inhumations, and cremations) have been documented. Some burials were severely disturbed (by ancient activities such as grave robbing and/or contemporary construction work), and some were set within fenced enclosures ("Grabgärten"). Three (of 22) samples of charcoal and bone fragments taken by Peter Stadler (Department of Prehistory, Natural History Museum Vienna) in the course of the FWFproject "Absolute Chronology for Early Civilisations in Austria and Central Europe" returned AMS dates of 410-200 cal BCE (grave 520), 550-200 cal BCE (grave 565) and 380-350 cal BCE (grave 1005) (Ramsl 2002b, 359). The cremation burials were not included in the initial osteological analysis, but 31 inhumed individuals were studied (Gerold 2002). Petrous bones from three of these were successfully analyzed for aDNA. Sample I11699 (female) derived from an individual (inv. no. 26.238) aged c. 20 years in grave 89 which, despite disturbance in antiquity, was accompanied by fibulae and ceramic vessels. Sample I11701 (male) derived from an individual (inv. no. 26.249) aged c. 18 years in grave 570, which also included shears, fibulae, and ceramic vessels. Evidence for bone porosity in the mandible and maxilla suggest possible Vitamin C deficiency, while enamel hypoplasia points to malnutrition or illness during childhood. Sample I11708 (female) derived from an individual (inv.no. 26.250) aged c. 25-35 years in grave 574/2, who was richly adorned with fibulae, bronze, iron and silver-rings, an amber ring, a bracelet, a glass bead, and a worked bone artefact.
Consuming the milk of other species is a unique adaptation of Homo sapiens, with implications for health, birth spacing and evolution. Key questions nonetheless remain regarding the origins of dairying and its relationship to the genetically-determined ability to drink milk into adulthood through lactase persistence (LP). As a major centre of LP diversity, Africa is of significant interest to the evolution of dairying. Here we report proteomic evidence for milk consumption in ancient Africa. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) we identify dairy proteins in human dental calculus from northeastern Africa, directly demonstrating milk consumption at least six millennia ago. Our findings indicate that pastoralist groups were drinking milk as soon as herding spread into eastern Africa, at a time when the genetic adaptation for milk digestion was absent or rare. Our study links LP status in specific ancient individuals with direct evidence for their consumption of dairy products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.