y. The Version of Record is the version of the article after copy-editing and typesetting, and connected to open research data, open protocols, and open code where available. Any supplementary information can be found on the journal website, connected to the Version of Record.
We present results from a well‐dated sediment core on the Pacific‐Antarctic Ridge (PAR) that document a ∼15 cm thick layer of basaltic ash shards that precedes the penultimate deglaciation (Termination 2). The glasses have MORB composition consistent with an axial source and their morphologies are typical of pyroclastic deposits created by submarine volcanism. The ash layer was deposited ∼7 km from the PAR axis, a distance that implies buoyant plumes lofted debris high into the water column with subsequent fallout to the core location. We infer plume rise height using grain settling velocities, the water depth at the core site, and deep ocean current speeds from ARGO floats. Rise heights of 1.5 km or less require unrealistically large current speeds to transport grains to the core site. Instead, the data are consistent with a plume rise height of at least 2 km, implying that T2 was an interval of anomalous volcanism along this segment of the PAR. The timing and duration of the ash deposit is consistent with glacial‐interglacial modulation of ridge magmatism. Volcaniclastic records from additional locations will be necessary to assess whether the PAR record is a rare find or it is representative of mid‐ocean ridge volcanism during glacial terminations.
Cornual pregnancies are a rare form of ectopic pregnancy that can be misdiagnosed as an intrauterine pregnancy via ultrasound. We report a 16-year-old adolescent girl with a cornual ectopic pregnancy and subsequent rupture in the emergency department.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.