Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review,we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Ralstonia solanacearum is a globally distributed plant pathogen that causes bacterial wilt diseases of many crop hosts, threatening both sustenance farming and industrial agriculture. Here, we present closed genome sequences for the R. solanacearum type strain, K60, and the cool-tolerant potato brown rot strain R. solanacearum UW551, a highly regulated U.S. select agent pathogen.
Retroviruses, a form of mobile genetic elements, have important roles in disease and primate evolution. Exogenous retroviruses, such as human immunodeficiency virus (HIV), have significant pathological implications that have created a massive public health challenge in recent years. Endogenous retroviruses (ERVs), which are the primary focus of this review, can also be pathogenic, as well as being beneficial to a host in some cases. Furthermore, retroviruses may have played a key role in primate evolution that resulted in the incorporation of these elements into the human genome. Retroviruses are mobile genetic elements that have important roles in disease and primate evolution. We will further discuss the pathogenic potential of retroviruses, including their role in cancer biology, and will briefly summarize their evolutionary implications.
Bacteria in the
Ralstonia solanacearum
species complex (RSSC) are globally distributed and cause destructive vascular wilt diseases of many high-value crops. These aggressive pathogens spread in diseased plant material and via contaminated soil, tools, and irrigation water.
We share whole genome sequences of six strains from the Ralstonia solanacearum species complex, a diverse group of beta-Proteobacteria that cause plant vascular wilt diseases. Using single-molecule real-time (SMRT) technology, we sequenced and assembled full genomes of Rs5 and UW700, two phylotype IA-sequevar 7 (IIA-7) strains from the southeastern US that are closely related to the R. solanacearum species type strain, K60, but were isolated >50 years later. Four sequenced strains from Africa include a soil isolate from Nigeria (UW386, III-23), a tomato isolate from Senegal (UW763, I-14), and two potato isolates from the Madagascar highlands (RUN2474, III-19 and RUN2279, III-60). This resource will support studies of the genetic diversity, ecology, virulence, and microevolution of this globally distributed group of high-impact plant pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.