Cobalt doped zinc oxide (Zn 1-x Co x O; x = 0, 0.05, 0.10, 0.15) samples were synthesized using coprecipitation method. The Co doped ZnO nanoparticles showed the maximum solubility limit. The XRD patterns confirm the hexagonal type wurtzite structure without secondary phase in Co substituted ZnO samples. The particle size was studied using transmission electron microscope (TEM) and grain size estimated using scanning electron microscope (SEM). We report the study of temperature dependence of conductivity on ZnO and Co doped ZnO nanoparticles. It is found that at a higher temperature range (above 470 K) thermally activated type of conduction is in dominance with the lower temperature range of conduction in which donor carrier hopping mechanism is dominated. DC conductivity result shows the reduction nature for cobalt doped ZnO. The obtained results are discussed on basis of potential barrier, donor concentration, point defects and adsorption-desorption of oxygen. Cobalt substitution increases resistivity, reduces grain growth, lower particle size and increase in activation energy. Detailed mapping of two regions of electrical conductivity is done to understand the activation energy mechanisms prevailing in cobalt doped ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.