A new non-linear optimization approach is proposed for the sparse reconstruction of log-conductivities in current density impedance imaging. This framework comprises of minimizing an objective functional involving a least squares fit of the interior electric field data corresponding to two boundary voltage measurements, where the conductivity and the electric potential are related through an elliptic PDE arising in electrical impedance tomography. Further, the objective functional consists of a L 1 regularization term that promotes sparsity patterns in the conductivity and a Perona-Malik anisotropic diffusion term that enhances the edges to facilitate high contrast and resolution. This framework is motivated by a similar recent approach to solve an inverse problem in acousto-electric tomography. Several numerical experiments and comparison with an existing method demonstrate the effectiveness of the proposed method for superior image reconstructions of a wide-variety of log-conductivity patterns.
We present a new nonlinear optimization approach for the sparse reconstruction of single-photon absorption and two-photon absorption coefficients in the photoacoustic computed tomography (PACT). This framework comprises of minimizing an objective functional involving a least squares fit of the interior pressure field data corresponding to two boundary source functions, where the absorption coefficients and the photon density are related through a semi-linear elliptic partial differential equation (PDE) arising in photoacoustic tomography. Further, the objective functional consists of an L
1 regularization term that promotes sparsity patterns in absorption coefficients. The motivation for this framework primarily comes from some recent works related to solving inverse problems in acousto-electric tomography and current density impedance tomography. We provide a new proof of existence and uniqueness of a solution to the semi-linear PDE. Further, a proximal method, involving a Picard solver for the semi-linear PDE and its adjoint, is used to solve the optimization problem. Several numerical experiments are presented to demonstrate the effectiveness of the proposed framework.
A novel technique is presented to construct and analyze second‐order modified positive and elementary stable nonstandard (SOPESN) numerical methods for solving two general classes of
‐dimensional autonomous ordinary differential equations. The new SOPESN methods are second‐order generalizations of the explicit Euler's method, thereby improving the order of accuracy of the underlying numerical method. Numerical simulations are presented to validate the theoretical results and highlight the advantages of the proposed new modified nonstandard methods over existing standard and nonstandard numerical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.