Recurrent Neural Networks (RNNs) are a class of machine learning algorithms used for applications with time-series and sequential data. Recently, there has been a strong interest in executing RNNs on embedded devices. However, difficulties have arisen because RNN requires high computational capability and a large memory space. In this paper, we review existing implementations of RNN models on embedded platforms and discuss the methods adopted to overcome the limitations of embedded systems. We will define the objectives of mapping RNN algorithms on embedded platforms and the challenges facing their realization. Then, we explain the components of RNN models from an implementation perspective. We also discuss the optimizations applied to RNNs to run efficiently on embedded platforms. Finally, we compare the defined objectives with the implementations and highlight some open research questions and aspects currently not addressed for embedded RNNs. Overall, applying algorithmic optimizations to RNN models and decreasing the memory access overhead is vital to obtain high efficiency. To further increase the implementation efficiency, we point up the more promising optimizations that could be applied in future research. Additionally, this article observes that high performance has been targeted by many implementations, while flexibility has, as yet, been attempted less often. Thus, the article provides some guidelines for RNN hardware designers to support flexibility in a better manner. INDEX TERMS Compression, flexibility, efficiency, embedded computing, long short term memory (LSTM), quantization, recurrent neural networks (RNNs).
Abstract-Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3× faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.