Recurrent Neural Networks (RNNs) are a class of machine learning algorithms used for applications with time-series and sequential data. Recently, there has been a strong interest in executing RNNs on embedded devices. However, difficulties have arisen because RNN requires high computational capability and a large memory space. In this paper, we review existing implementations of RNN models on embedded platforms and discuss the methods adopted to overcome the limitations of embedded systems. We will define the objectives of mapping RNN algorithms on embedded platforms and the challenges facing their realization. Then, we explain the components of RNN models from an implementation perspective. We also discuss the optimizations applied to RNNs to run efficiently on embedded platforms. Finally, we compare the defined objectives with the implementations and highlight some open research questions and aspects currently not addressed for embedded RNNs. Overall, applying algorithmic optimizations to RNN models and decreasing the memory access overhead is vital to obtain high efficiency. To further increase the implementation efficiency, we point up the more promising optimizations that could be applied in future research. Additionally, this article observes that high performance has been targeted by many implementations, while flexibility has, as yet, been attempted less often. Thus, the article provides some guidelines for RNN hardware designers to support flexibility in a better manner. INDEX TERMS Compression, flexibility, efficiency, embedded computing, long short term memory (LSTM), quantization, recurrent neural networks (RNNs).
Recurrent neural networks (RNNs) are neural networks (NN) designed for time-series applications. There is a growing interest in running RNNs to support these applications on edge devices. However, RNNs have large memory and computational demands that make them challenging to implement on edge devices. Quantization is used to shrink the size and the computational needs of such models by decreasing weights and activation precision. Further, the delta networks method increases the sparsity in activation vectors by relying on the temporal relationship between successive input sequences to eliminate repeated computations and memory accesses. In this paper, we study the effect of quantization on LSTM-, GRU-, LiGRU-, and SRU-based RNN models for speech recognition on the TIMIT dataset. We show how to apply post-training quantization on these models with a minimal increase in the error by skipping quantization of selected paths. In addition, we show that the quantization of activation vectors in RNNs to integer precision leads to considerable sparsity if the delta networks method is applied. Then, we propose a method for increasing the sparsity in the activation vectors while minimizing the error and maximizing the percentage of eliminated computations. The proposed quantization method managed to compress the four models more than 85%, with an error increase of 0.6, 0, 2.1, and 0.2 percentage points, respectively. By applying the delta networks method to the quantized models, more than 50% of the operations can be eliminated, in most cases with only a minor increase in the error. Comparing the four models to each other under the quantization and delta networks method, we found that compressed LSTM-based models are the most-optimum solutions at low-error-rates constraints. The compressed SRU-based models are the smallest in size, suitable when higher error rates are acceptable, and the compressed LiGRU-based models have the highest number of eliminated operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.