Carbon fiber reinforced AA7075 is known for good thermal properties and thus used as heat dissipating material. However, few such applications involve corrosive environments too, and hence there is a need to study the behavior of these composite materials under corrosive environment. In the present work, milled carbon fiber reinforced AA7075 composites were produced by vacuum hot pressing with varying amounts of milled carbon fibers. The relative densities of the composites were measured. SEM-EDS, TEM and XRD techniques were also employed for characterization. The composites were then characterized for electrochemical behavior in 3.5 wt.% aqueous NaCl solution by electrochemical polarization technique. Results showed that the corrosion potentials E corr have shifted to more negative direction and thus showed increase in corrosion current density, leading to increase in corrosion rate with increasing vol.% of carbon fibers. These results were complemented by SEM micrographs of the composites after corrosion test, which revealed that corrosion occurred at the interface of carbon fiber and matrix due to formation of galvanic coupling between carbon fiber and matrix. Thus, reduced corrosion resistance in composites as amount of fibers increases, is attributed to increase in number of galvanic cells that form at the interface.
Purpose
This study aims to develop indium-based solders for cryogenic applications.
Design/methodology/approach
This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC.
Findings
It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications
Originality/value
DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.