This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas. The paper then discusses current limitations of bioink materials and presents the future prospects to the reader.
Droplet-based bioprinting (DBB) offers greater advantages due to its simplicity and agility with precise control on deposition of biologics including cells, growth factors, genes, drugs and biomaterials, and has been a prominent technology in the bioprinting community. Due to its immense versatility, DBB technology has been adopted by various application areas, including but not limited to, tissue engineering and regenerative medicine, transplantation and clinics, pharmaceutics and high-throughput screening, and cancer research. Despite the great benefits, the technology currently faces several challenges such as a narrow range of available bioink materials, bioprinting-induced cell damage at substantial levels, limited mechanical and structural integrity of bioprinted constructs, and restrictions on the size of constructs due to lack of vascularization and porosity. This paper presents a first-time review of DBB and comprehensively covers the existing DBB modalities including inkjet, electrohydrodynamic, acoustic, and micro-valve bioprinting. The recent notable studies are highlighted, the relevant bioink biomaterials and bioprinters are expounded, the application areas are presented, and the future prospects are provided to the reader.
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.
The cancer microenvironment is known for its complexity, both in its content as well as its dynamic nature, which is difficult to study using two-dimensional (2D) cell culture models. Several advances in tissue engineering have allowed more physiologically relevant three-dimensional (3D) in vitro cancer models, such as spheroid cultures, biopolymer scaffolds, and cancer-on-a-chip devices. Although these models serve as powerful tools for dissecting the roles of various biochemical and biophysical cues in carcinoma initiation and progression, they lack the ability to control the organization of multiple cell types in a complex dynamic 3D architecture. By virtue of its ability to precisely define perfusable networks and position of various cell types in a high-throughput manner, 3D bioprinting has the potential to more closely recapitulate the cancer microenvironment, relative to current methods. In this review, we discuss the applications of 3D bioprinting in mimicking cancer microenvironment, their use in immunotherapy as prescreening tools, and overview of current bioprinted cancer models.
3D bioprinting has emerged as a promising new approach for fabricating complex biological constructs in the field of tissue engineering and regenerative medicine. It aims to alleviate the hurdles of conventional tissue engineering methods by precise and controlled layer-by-layer assembly of biomaterials in a desired 3D pattern. The 3D bioprinting of cells, tissues, and organs Collection at Scientific Reports brings together a myriad of studies portraying the capabilities of different bioprinting modalities. This Collection amalgamates research aimed at 3D bioprinting organs for fulfilling demands of organ shortage, cell patterning for better tissue fabrication, and building better disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.