We present a demonstration of the simultaneous measurement of spatially resolved three-component velocity and temperature in gaseous flow fields using a variant of the vibrationally excited nitric oxide monitoring (VENOM) technique, based on planar laser induced fluorescence and molecular tagging velocimetry methods. Three-component velocity determinations were derived from two-dimensional molecular tagging velocity measurements employing sequential fluorescence image pairs obtained simultaneously by two cameras in stereoscopic configuration. Probing two different rotational states of nitric oxide (X2∏, υ''=1), produced via fluorescence and collisional quenching from initial excitation to the A Σ+2 state, for the sequential velocimetry images allows simultaneous determination of the temperature field. Experimental measurements of velocity and temperature across an oblique shock result in mean values within 21 m/s for the three components of velocity and 20 K for planar temperature when compared to oblique shock calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.