We present analytical expressions relating the bipolar moment β(Q)(K)(k(1)k(2)) parameters of Dixon to the measured anisotropy parameters of different pump/probe geometry sliced ion images. In the semi-classical limit, when there is no significant coherent contribution from multiple excited states to fragment angular momentum polarization, the anisotropy of the images alone is sufficient to extract the β(Q)(K)(k(1)k(2)) parameters with no need to reference relative image intensities. The analysis of sliced images is advantageous since the anisotropy can be directly obtained from the image at any radius without the need for 3D-deconvolution, which is not applicable for most pump/probe geometries. This method is therefore ideally suited for systems which result in a broad distribution of fragment velocities. The bipolar moment parameters are obtained for NO(2) dissociation at 355 nm using these equations, and are compared to the bipolar moment parameters obtained from a proven iterative fitting technique for crushed ion images. Additionally, the utility of these equations in extracting speed-dependent bipolar moments is demonstrated on the recently investigated NO(3) system.
A chemical dynamics simulation was performed to model experiments [N. A. West et al., J. Chem. Phys. 145, 014308 (2016)] in which benzene molecules are vibrationally excited to 148.1 kcal/mol within a N2-benzene bath. A significant fraction of the benzene molecules are excited, resulting in heating of the bath, which is accurately represented by the simulation. The interesting finding from the simulations is the non-statistical collisional energy transfer from the vibrationally excited benzene C6H6* molecules to the bath. The simulations find that at ∼10−7 s and 1 atm pressure there are four different final temperatures for C6H6* and the bath. N2 vibration is not excited and remains at the original bath temperature of 300 K. Rotation and translation degrees of freedom of both N2 and C6H6 in the bath are excited to a final temperature of ∼340 K. Energy transfer from the excited C6H6* molecules is more efficient to vibration of the C6H6 bath than its rotation and translation degrees of freedom, and the final vibrational temperature of the C6H6 bath is ∼453 K, if the average energy of each C6H6 vibration mode is assumed to be RT. There is no vibrational equilibration between C6H6* and the C6H6 bath molecules. When the simulations are terminated, the vibrational temperatures of the C6H6* and C6H6 bath molecules are ∼537 K and ∼453 K, respectively. An important question is the time scale for complete energy equilibration of the C6H6* and N2 and C6H6 bath system. At 1 atm and 300 K, the experimental V-T (vibration-translation) relaxation time for N2 is ∼10−4 s. The simulation time was too short for equilibrium to be attained, and the time for complete equilibration of C6H6* vibration with translation, rotation, and vibration of the bath was not determined.
Rate coefficients have been measured for the reaction of CH radicals with formaldehyde, CH 2 O, over the temperature range 31 -133 K using a pulsed Laval nozzle apparatus combined with pulsed laser photolysis and laser induced fluorescence spectroscopy. The rate coefficients are very large and display a distinct decrease with decreasing temperature below 70 K, although classical collision rate theory fails to reproduce this temperature dependence. The measured rate coefficients have been parameterized and used as input for astrochemical models for both dark cloud and AGB stellar outflow scenarios. The models predict a distinct change (up to a factor of two) in the abundance of ketene, H 2 CCO, which is the major expected molecular product of the CH + CH 2 O reaction.
The first experimental study of the low-temperature kinetics of the gas-phase reaction of NH2 with formaldehyde (CH2O) has been performed. This reaction has previously been suggested as a source of formamide (NH2CHO) in interstellar environments. A pulsed Laval nozzle equipped with laser-flash photolysis and laser-induced fluorescence spectroscopy was used to create and monitor the temporal decay of NH2 in the presence of CH2O. No loss of NH2 could be observed via reaction with CH2O, and we place an upper limit on the rate coefficient of <6 × 10−12 cm3 molecule−1 s−1 at 34 K. Ab initio calculations of the potential energy surface were combined with Rice–Rampsberger–Kassel–Marcus (RRKM) calculations to predict a rate coefficient of 6.2 × 10−14 cm3 molecule−1 s−1 at 35 K, consistent with the experimental results. The presence of a significant barrier, 18 kJ mol−1, for the formation of formamide as a product, means that only the H-abstraction channel producing NH3 + CHO, in which the transfer of an H atom can occur by quantum mechanical tunneling through a 23 kJ mol−1 barrier, is open at low temperatures. These results are in contrast with a recent theoretical study, which suggested that the reaction could proceed without a barrier and was therefore a viable route to gas-phase formamide formation. The calculated rate coefficients were used in an astrochemical model, which demonstrated that this reaction produces only negligible amounts of gas-phase formamide under interstellar and circumstellar conditions. The reaction of NH2 with CH2O is therefore not an important source of formamide at low temperatures in interstellar environments.
Gas phase Intermolecular Energy Transfer (IET) is a fundamental component of accurately explaining the behavior of gas phase systems in which the internal energy of particular modes of molecules is greatly out of equilibrium. In this work, chemical dynamics simulations of mixed benzene/N2 baths with one highly vibrationally excited benzene molecule (Bz*) are compared to experimental results at 140 K. Two mixed bath models are considered. In one, the bath consists of 190 N2 and 10 Bz, whereas in the other bath 396 N2 and 4 Bz are utilized. The results are compared to 300 K simulations and experiments, revealing that Bz*-Bz vibration-vibration (V-V) IET efficiency increased at low temperatures consistent with longer lived "chattering" collisions at lower temperatures. In the simulations, at the Bz* excitation energy of 150 kcal/mol, the averaged energy transferred per collision, < Ec>, for Bz*-Bz collisions is found ~2.4 times larger in 140 K than in 300 K bath, whereas this value is ~1.3 times lower for Bz*-N2 collisions. The overall < Ec>, for all collisions, is found to be almost two times larger at 140 K compared to the one obtained from the 300 K bath. Such an enhancement of IET efficiency at 140 K is qualitatively consistent with the experimental observation. However, the possible reasons for not attaining a quantitative agreement are discussed. These results imply that the bath temperature and molecular composition as well as the magnitude of vibrational energy of a highly vibrationally excited molecule can shift the overall time scale of rethermalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.