In order to analyze the molecular mechanisms underlying the responses of plants to different levels of drought stress, we developed a soil matric potential (SMP)-based irrigation system that precisely controls soil moisture. Using this system, rice seedlings were grown under three different drought levels, denoted Md1, Md2 and Md3, with SMP values set to -9.8, -31.0 and -309.9 kPa, respectively. Although the Md1 treatment did not alter the visible phenotype, the Md2 treatment caused stomatal closure and shoot growth retardation (SGR). The Md3 treatment markedly induced SGR, without inhibition of photosynthesis. More severe drought (Sds) treatment, under which irrigation was terminated, resulted in the wilting of leaves and inhibition of photosynthesis. Metabolome analysis revealed the accumulation of primary sugars under Md3 and Sds and of most amino acids under Sds. The starch content was increased under Md3 and decreased under Sds. Transcriptome data showed that the expression profiles of associated genes supported the observed changes in photosynthesis and metabolites, suggesting that the time lag from SGR to inhibition of photosynthesis might lead to the accumulation of photosynthates under Md3, which can be used as osmolytes under Sds. To gain further insight into the observed SGR, transcriptome and hormonome analyses were performed in specific tissues. The results showed specific decreases in indole-3-acetic acid (IAA) and cytokinin levels in Md2-, Md3- and Sds-treated shoot bases, though the expression levels of hormone metabolism-related genes were not reflected in IAA and cytokinin contents. These observations suggest that drought stress affects the distribution or degradation of cytokinin and IAA molecules.
SummaryAlthough a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene‐stacking approach using two transcription factor genes: DEHYDRATION‐RESPONSIVE ELEMENT‐BINDING 1A (DREB1A) and rice PHYTOCHROME‐INTERACTING FACTOR‐LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME‐INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall‐related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress‐inducible DREB1A downstream genes and cell elongation‐related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade‐offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought‐tolerant transgenic plants.
The lytic polysaccharide monooxygenases (LPMOs) have received considerable attention subsequent to their discovery because of their ability to boost the enzymatic conversion of recalcitrant polysaccharides. In the present study, we describe the enzymatic properties of SgLPMO10F, a small (15 kDa) auxilliary activity (AA) family 10 LPMO from Streptomyces griseus belonging to a clade of the phylogenetic tree without any characterized representative. The protein was expressed using a Brevibacillus-based expression system that had not been used previously for LPMO expression and that also ensures correct processing of the N-terminus crucial for LPMO activity. The enzyme was active towards both a-and b-chitin and showed stronger binding and a greater release of soluble oxidized products for the latter allomorph. In chitinase synergy assays, however, SgLPMO10F worked slightly better for a-chitin, increasing chitin solubilization yields by up to 30-fold and 20-fold for a-and b-chitin, respectively. Synergy experiments with various chitinases showed that the addition of SgLPMO10F leads to a substantial increase in the (GlcNAc) 2 :GlcNAc product ratio, in reactions with a-chitin only. This underpins the structural differences between the substrates and also shows that, on a-chitin, SgLPMO10F affects the binding mode and/or degree of processivity of the chitinases tested. Variation in the only exposed aromatic residue in the substrate-binding surface of LPMO10s has previously been linked to preferential binding for a-chitin (exposed Trp) or b-chitin (exposed Tyr). Mutation of this residue, Tyr56, in SgLPMO10F to Trp had no detectable effect on substrate-binding preferences but, in synergy experiments, the mutant appeared to be more efficient on a-chitin.
The molecular breeding of drought stress-tolerant crops is imperative for stable food and biomass production. However, a trade-off exists between plant growth and drought stress tolerance. Many drought stress-tolerant plants overexpressing stress-inducible genes, such as DEHYDRATION-RESPONSIVE ELE-MENT-BINDING PROTEIN 1A (DREB1A), show severe growth retardation. Here, we demonstrate that the growth of DREB1A-overexpressing Arabidopsis plants could be improved by co-expressing growth-enhancing genes whose expression is repressed under drought stress conditions. We used Arabidopsis GA REQUIRING 5 (GA5), which encodes a rate-limiting gibberellin biosynthetic enzyme, and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which encodes a transcription factor regulating cell growth in response to light and temperature, for growth improvement. We observed an enhanced biomass and floral induction in the GA5 DREB1A and PIF4 DREB1A double overexpressors compared with those in the DREB1A overexpressors. Although the GA5 DREB1A double overexpressors continued to show high levels of drought stress tolerance, the PIF4 DREB1A double overexpressors showed lower levels of stress tolerance than the DREB1A overexpressors due to repressed expression of DREB1A. A multiomics analysis of the GA5 DREB1A double overexpressors showed that the co-expression of GA5 and DREB1A additively affected primary metabolism, gene expression and plant hormone profiles in the plants. These multidirectional analyses indicate that the inherent trade-off between growth and drought stress tolerance in plants can be overcome by appropriate gene-stacking approaches. Our study provides a basis for using genetic modification to improve the growth of drought stress-tolerant plants for the stable production of food and biomass.Keywords: drought and cold stress tolerance, dehydration-responsive element-binding protein 1A (DREB1A), GA REQUIRING 5 (GA5), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), enhanced biomass and floral induction, Arabidopsis. Figure 7. Endogenous gibberellin (GA) levels in GA5 DREB1A double overexpressors. Endogenous GA levels in 2-week-old transgenic plants. GAs are shown according their order in the biosynthesis pathway. ND indicates not detected. The error bars show the SD of more than three samples. The letters indicate significant differences among the samples (P < 0.05 according to Tukey's multiple range test). Solid and dashed lines indicate GA biosynthesis and deactivation pathways, respectively. GGDP, geranylgeranyl diphosphate; GA2ox, GA 2-oxidase; GA20ox, GA 20-oxidase; GA3ox, GA 3-oxidase. Co-expression of DREB1 and growth enhancers 251 Plant hormone analysisPlant hormones were extracted from whole plants grown on the agar medium for 2 weeks. The extraction, purification and
SummaryThe enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3‐1 (DPB3‐1)/nuclear factor Y subunit C10 (NF‐YC10) has been reported as a positive regulator of Dehydration‐responsive element binding protein 2A (DREB2A), and the overexpression of DPB3‐1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3‐1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3‐1 and its rice homologue OsDPB3‐2 function as positive regulators of DREB2A homologues. Overexpression of DPB3‐1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3‐1‐overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress‐inducible genes were up‐regulated in DPB3‐1‐overexpressing rice under heat stress conditions. However, the overexpression of DPB3‐1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3‐1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3‐1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.