Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short-and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the striatum, we determined precise subcellular distributions of the synthetic enzyme of 2-AG, DAG lipase-␣ (DAGL␣), and its upstream metabotropic glutamate receptor 5 (mGluR5) and muscarinic acetylcholine receptor 1 (M 1 ). DAGL␣, mGluR5, and M 1 were all richly distributed on the somatodendritic surface of MS neurons, but their subcellular distributions were different. Although mGluR5 and DAGL␣ levels were highest in spines and accumulated in the perisynaptic region, M 1 level was lowest in spines and was rather excluded from the mGluR5-rich perisynaptic region. These subcellular arrangements suggest that mGluR5 and M 1 might differentially affect endocannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) in MS neurons. Indeed, mGluR5 activation enhanced both DSI and DSE, whereas M 1 activation enhanced DSI only. Importantly, DSI, DSE, and receptor-driven endocannabinoid-mediated suppression were all abolished by the DAG lipase inhibitor tetrahydrolipstatin, indicating 2-AG as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons. Accordingly, CB 1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neurons and parvalbumin-positive interneurons and at low levels on excitatory corticostriatal afferents. Thus, endocannabinoid signaling molecules are arranged to modulate the excitability of the MS neuron effectively depending on cortical activity and cholinergic tone as measured by mGluR5 and M 1 receptors, respectively.
Eye-opening represents a turning point in the function of the visual cortex. Before eye-opening, the visual cortex is largely devoid of sensory inputs and neuronal activities are generated intrinsically. After eye-opening, the cortex starts to integrate visual information. Here we used in vivo two-photon calcium imaging to explore the developmental changes of the mouse visual cortex by analyzing the ongoing spontaneous activity. We found that before eye-opening, the activity of layer 2/3 neurons consists predominantly of slow wave oscillations. These waves were first detected at postnatal day 8 (P8). Their initial very low frequency (0.01 Hz) gradually increased during development to Ϸ0.5 Hz in adults. Before eye-opening, a large fraction of neurons (>75%) was active during each wave. One day after eye-opening, this dense mode of recruitment changed to a sparse mode with only 36% of active neurons per wave. This was followed by a progressive decrease during the following weeks, reaching 12% of active neurons per wave in adults. The possible role of visual experience for this process of sparsification was investigated by analyzing darkreared mice. We found that sparsification also occurred in these mice, but that the switch from a dense to a sparse activity pattern was delayed by 3-4 days as compared with normally-reared mice. These results reveal a modulatory contribution of visual experience during the first days after eye-opening, but an overall dominating role of intrinsic factors. We propose that the transformation in network activity from dense to sparse is a prerequisite for the changed cortical function at eye-opening.calcium waves ͉ cortical development ͉ mouse ͉ two-photon imaging ͉ up-down states
Previous studies of the ferret visual cortex indicate that the development of direction selectivity requires visual experience. Here, we used two-photon calcium imaging to study the development of direction selectivity in layer 2/3 neurons of the mouse visual cortex in vivo. Surprisingly, just after eye opening nearly all orientation-selective neurons were also direction selective. During later development, the number of neurons responding to drifting gratings increased in parallel with the fraction of neurons that were orientation, but not direction, selective. Our experiments demonstrate that direction selectivity develops normally in dark-reared mice, indicating that the early development of direction selectivity is independent of visual experience. Furthermore, remarkable functional similarities exist between the development of direction selectivity in cortical neurons and the previously reported development of direction selectivity in the mouse retina. Together, these findings provide strong evidence that the development of orientation and direction selectivity in the mouse brain is distinctly different from that in ferrets.
Endogenous cannabinoids (endocannabinoids) act as retrograde inhibitory messengers in various regions of the brain. We have recently reported that endocannabinoids mediate short-term retrograde suppression of excitatory synaptic transmission from the neocortex to medium spiny (MS) neurons, the major projection neurons from the striatum. However, it remains unclear whether endocannabinoids modulate inhibitory transmission in the striatum. Here we show that depolarization of MS neurons induces transient suppression of inhibition that is mediated by retrograde endocannabinoid signalling. By paired recording from a fast-spiking (FS) interneuron and an MS neuron, we demonstrated that FS-MS inhibitory synapses undergo endocannabinoid-mediated retrograde suppression. We verified that GABAergic inhibitory terminals immunopositive for parvalbumin (PV), a marker for FS interneurons, expressed CB1 receptors. These PV-CB1 double-positive terminals surrounded dopamine D1 receptor-positive and D2 receptor-positive MS neurons; these constitute direct and indirect pathways, respectively. These results suggest that endocannabinoid-mediated retrograde suppression of inhibition influences information flow along both direct and indirect pathways, depending on the activity of MS neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.