The discovery of cannabinoid receptors and subsequent identification of their endogenous ligands (endocannabinoids) in early 1990s have greatly accelerated research on cannabinoid actions in the brain. Then, the discovery in 2001 that endocannabinoids mediate retrograde synaptic signaling has opened up a new era for cannabinoid research and also established a new concept how diffusible messengers modulate synaptic efficacy and neural activity. The last 7 years have witnessed remarkable advances in our understanding of the endocannabinoid system. It is now well accepted that endocannabinoids are released from postsynaptic neurons, activate presynaptic cannabinoid CB1 receptors, and cause transient and long-lasting reduction of neurotransmitter release. In this review, we aim to integrate our current understanding of functions of the endocannabinoid system, especially focusing on the control of synaptic transmission in the brain. We summarize recent electrophysiological studies carried out on synapses of various brain regions and discuss how synaptic transmission is regulated by endocannabinoid signaling. Then we refer to recent anatomical studies on subcellular distribution of the molecules involved in endocannabinoid signaling and discuss how these signaling molecules are arranged around synapses. In addition, we make a brief overview of studies on cannabinoid receptors and their intracellular signaling, biochemical studies on endocannabinoid metabolism, and behavioral studies on the roles of the endocannabinoid system in various aspects of neural functions.
Endocannabinoids are released from postsynaptic neurons and cause retrograde suppression of synaptic transmission. Anandamide and 2-arachidonoylglycerol (2-AG) are regarded as two major endocannabinoids. To determine to what extent 2-AG contributes to retrograde signaling, we generated and analyzed mutant mice lacking either of the two 2-AG synthesizing enzymes diacylglycerol lipase alpha (DGLalpha) and beta (DGLbeta). We found that endocannabinoid-mediated retrograde synaptic suppression was totally absent in the cerebellum, hippocampus, and striatum of DGLalpha knockout mice, whereas the retrograde suppression was intact in DGLbeta knockout brains. The basal 2-AG content was markedly reduced and stimulus-induced elevation of 2-AG was absent in DGLalpha knockout brains, whereas the 2-AG content was normal in DGLbeta knockout brains. Morphology of the brain and expression of molecules required for 2-AG production other than DGLs were normal in the two knockout mice. We conclude that 2-AG produced by DGLalpha, but not by DGLbeta, mediates retrograde suppression at central synapses.
Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short-and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the striatum, we determined precise subcellular distributions of the synthetic enzyme of 2-AG, DAG lipase-␣ (DAGL␣), and its upstream metabotropic glutamate receptor 5 (mGluR5) and muscarinic acetylcholine receptor 1 (M 1 ). DAGL␣, mGluR5, and M 1 were all richly distributed on the somatodendritic surface of MS neurons, but their subcellular distributions were different. Although mGluR5 and DAGL␣ levels were highest in spines and accumulated in the perisynaptic region, M 1 level was lowest in spines and was rather excluded from the mGluR5-rich perisynaptic region. These subcellular arrangements suggest that mGluR5 and M 1 might differentially affect endocannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) in MS neurons. Indeed, mGluR5 activation enhanced both DSI and DSE, whereas M 1 activation enhanced DSI only. Importantly, DSI, DSE, and receptor-driven endocannabinoid-mediated suppression were all abolished by the DAG lipase inhibitor tetrahydrolipstatin, indicating 2-AG as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons. Accordingly, CB 1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neurons and parvalbumin-positive interneurons and at low levels on excitatory corticostriatal afferents. Thus, endocannabinoid signaling molecules are arranged to modulate the excitability of the MS neuron effectively depending on cortical activity and cholinergic tone as measured by mGluR5 and M 1 receptors, respectively.
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid that is released from postsynaptic neurons, acts retrogradely on presynaptic cannabinoid receptor CB1, and induces short-and long-term suppression of transmitter release. To understand the mechanisms of the 2-AG-mediated retrograde modulation, we investigated subcellular localization of a major 2-AG biosynthetic enzyme, diacylglycerol lipase-␣ (DAGL␣), by using immunofluorescence and immunoelectron microscopy in the mouse brain. In the cerebellum, DAGL␣ was predominantly expressed in Purkinje cells. DAGL␣ was detected on the dendritic surface and occasionally on the somatic surface, with a distal-to-proximal gradient from spiny branchlets toward somata. DAGL␣ was highly concentrated at the base of spine neck and also accumulated with much lower density on somatodendritic membrane around the spine neck. However, DAGL␣ was excluded from the main body of spine neck and head. In hippocampal pyramidal cells, DAGL␣ was also accumulated in spines. In contrast to the distribution in Purkinje cells, DAGL␣ was distributed in the spine head, neck, or both, whereas somatodendritic membrane was labeled very weakly. These results indicate that DAGL␣ is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons. The preferential spine targeting should enable efficient 2-AG production on excitatory synaptic activity and its swift retrograde modulation onto nearby presynaptic terminals expressing CB1. Furthermore, different fine localization within and around spines suggests that the distance between postsynaptic 2-AG production site and presynaptic CB1 is differentially controlled depending on neuron types.
The basal ganglia play key roles in adaptive behaviors guided by reward and punishment. However, despite accumulating knowledge, few studies have tested how heterogeneous signals in the basal ganglia are organized and coordinated for goal-directed behavior. In this study, we investigated neuronal signals of the direct and indirect pathways of the basal ganglia as rats performed a lever push/pull task for a probabilistic reward. In the dorsomedial striatum, we found that optogenetically and electrophysiologically identified direct pathway neurons encoded reward outcomes, whereas indirect pathway neurons encoded no-reward outcome and next-action selection. Outcome coding occurred in association with the chosen action. In support of pathway-specific neuronal coding, light activation induced a bias on repeat selection of the same action in the direct pathway, but on switch selection in the indirect pathway. Our data reveal the mechanisms underlying monitoring and updating of action selection for goal-directed behavior through basal ganglia circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.