A new type of substrate lens for photoconductive antennas (PCA’s) based on sub-wavelength microstructuring is presented and studied theoretically by the use of Greens function integral equation methods (GFIEM’s). By etching sub-wavelength trenches into a flat substrate, the effective dielectric constant can be designed to function like a gradient index (GRIN) lens. The proposed GRIN substrate lenses have sub-mm dimension, which is smaller than the dimensions of a typical hyper-hemispherical substrate lens (HSL), and could enable fabrication of arrays of closely packed PCA’s with individual lenses integrated directly into the PCA substrate. The performance of different GRIN lenses is compared to a HSL and shown to be comparable with regards to the terahertz radiation extraction efficiency, and it is shown that the collimating properties of these GRIN lenses can be tailored by changing the parameters used for microstructuring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.