Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment.
(2018) Neuropathology and Applied Neurobiology 44, 185-206 Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype Aims: Glioblastomas are highly aggressive and treatment resistant. Increasing evidence suggests that tumour-associated macrophages/microglia (TAMs) facilitate tumour progression by acquiring a M2-like phenotype. Our objective was to investigate the prognostic value of TAMs in gliomas using automated quantitative double immunofluorescence. Methods: Samples from 240 patients with primary glioma were stained with antibodies against ionized calcium-binding adaptor molecule-1 (IBA-1) and cluster of differentiation 204 (CD204) to detect TAMs and M2-like TAMs. The expression levels were quantified by software-based classifiers. The associations between TAMs, gemistocytic cells and glioblastoma subtype were examined with immuno-and haematoxylin-eosin stainings. Three tissue arrays containing glioblastoma specimens were included to study IBA-1/CD204 levels in central tumour and tumour periphery and to characterize CD204 + cells. Results: Our data revealed that the amount of especially CD204 + TAMs increases with malignancy grade. In grade III-IV, high CD204 expression was associated with shorter survival, while high IBA-1 intensity correlated with a longer survival. In grade IV, CD204 showed independent prognostic value when adjusting for clinical data and the methylation status of O6-methylguanine-DNA methyltransferase. Our findings were confirmed in two bioinformatics databases. TAMs were more abundant in central tumour tissue, mesenchymal glioblastomas and gliomas with many gemistocytic cells. CD204 + TAMs coexpressed proteins related to tumour aggressiveness including matrix metallopeptidase-14 and hypoxiainducible factor-1a. Conclusions: This is the first study to use automated quantitative immunofluorescence to determine the prognostic impact of TAMs. Our results suggest that M2-like TAMs hold an unfavourable prognostic value in high-grade gliomas and may contribute to a pro-tumourigenic microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.