(2018) Neuropathology and Applied Neurobiology 44, 185-206 Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype Aims: Glioblastomas are highly aggressive and treatment resistant. Increasing evidence suggests that tumour-associated macrophages/microglia (TAMs) facilitate tumour progression by acquiring a M2-like phenotype. Our objective was to investigate the prognostic value of TAMs in gliomas using automated quantitative double immunofluorescence. Methods: Samples from 240 patients with primary glioma were stained with antibodies against ionized calcium-binding adaptor molecule-1 (IBA-1) and cluster of differentiation 204 (CD204) to detect TAMs and M2-like TAMs. The expression levels were quantified by software-based classifiers. The associations between TAMs, gemistocytic cells and glioblastoma subtype were examined with immuno-and haematoxylin-eosin stainings. Three tissue arrays containing glioblastoma specimens were included to study IBA-1/CD204 levels in central tumour and tumour periphery and to characterize CD204 + cells. Results: Our data revealed that the amount of especially CD204 + TAMs increases with malignancy grade. In grade III-IV, high CD204 expression was associated with shorter survival, while high IBA-1 intensity correlated with a longer survival. In grade IV, CD204 showed independent prognostic value when adjusting for clinical data and the methylation status of O6-methylguanine-DNA methyltransferase. Our findings were confirmed in two bioinformatics databases. TAMs were more abundant in central tumour tissue, mesenchymal glioblastomas and gliomas with many gemistocytic cells. CD204 + TAMs coexpressed proteins related to tumour aggressiveness including matrix metallopeptidase-14 and hypoxiainducible factor-1a. Conclusions: This is the first study to use automated quantitative immunofluorescence to determine the prognostic impact of TAMs. Our results suggest that M2-like TAMs hold an unfavourable prognostic value in high-grade gliomas and may contribute to a pro-tumourigenic microenvironment.
Summary
Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow cytometry screen on patient derived glioblastoma (GBM) cells and identified junctional adhesion molecule-A (JAM-A) as a CSC adhesion mechanism essential for self-renewal and tumor growth. JAM-A was dispensable for normal neural stem/progenitor cell (NPC) function and JAM-A expression was reduced in normal brain versus GBM. Targeting JAM-A compromises the self-renewal of CSCs. JAM-A expression negatively correlated to GBM patient prognosis. Our results demonstrate that novel GBM targeting strategies can be identified through screening adhesion receptors and JAM-A represents a novel mechanism for niche driven CSC maintenance.
Background: The COVID-19 pandemic is an international public health crisis. The risk of getting an infection with COVID-19 might impact the emotional well-being in patients with cancer. The aim of this study was to investigate quality of life (QoL) for patients with cancer during the COVID-19 pandemic. Patients and methods: A cross-sectional survey, including questions about demographics, concerns of COVID-19 impact on cancer treatment and outpatient clinic visits, and the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire was sent to patients with cancer at the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.