Dermacentor variabilis is the most widely distributed three-host tick in North America, and transmits a variety of pathogens. Within the United States, this species has a discontinuous distribution, widespread east of the Rocky Mountains and with a few populations west of the Rockies. Phylogenetic evidence based on individual markers or relatively small data sets has suggested that populations at both sides of this geographic barrier may correspond to two different species. In this study, we further explore this hypothesis using an integrative taxonomy framework. Both molecular (mitochondrial and nuclear markers) and morphological analyses of specimens collected from central-eastern and western states were performed to explore species delimitation in this taxon. Results from these analyses were consistent, and provide strong evidence that D. variabilis actually corresponds to two species. Herein, the western populations are described as a new species, Dermacentor similis n. sp. The usefulness of integrative taxonomy in the context of species delimitation is also discussed.
Inherent difficulties of tracking and observing organisms in the field often leave researchers with no choice but to conduct behavioral experiments under laboratory settings. However, results of laboratory experiments do not always translate accurately to natural conditions. A fundamental challenge in ecology is therefore to scale up from small area and short-duration laboratory experiments to large areas and long durations over which ecological processes generally operate. In this study, we propose that stable isotope analysis may be a tool that can link laboratory behavioral observations to past field interactions or function of individual organisms. We conducted laboratory behavioral assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic positions of these crayfish under preceding natural conditions. We hypothesized that more dominant crayfish in our assays would have higher trophic positions if dominance were related to competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a relationship between crayfish dominance and trophic position, and therefore infer that laboratory dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to our knowledge the first attempt to directly relate laboratory behavior to field performance via stable isotope analysis. We encourage future studies to continue to explore a possible link between laboratory and field behavior via stable isotope analysis, and propose several avenues to do so.
Paintedhand Mudbug (Lacunicambarus polychromatus (Thoma, Jezerinac & Simon 2005)) (Decapoda: Cambaridae) was recently discovered at three locations in Windsor, Ontario. These represent the first reports of this burrowing crayfish in Canada. iNaturalist, a nature app and website designed to record photo-based observations of plants and animals, was instrumental in facilitating this discovery. We discuss the importance of collaborative platforms, such as iNaturalist, for linking naturalists and citizen scientists to taxonomic experts around the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.