The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in R 2 and on surfaces embedded in R 3 as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points P in a domain Ω equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in Ω under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened.
Given an input 3D geometry such as a triangle soup or a point set, we address the problem of generating a watertight and orientable surface triangle mesh that strictly encloses the input. The output mesh is obtained by greedily refining and carving a 3D Delaunay triangulation on an offset surface of the input, while carving with empty balls of radius alpha. The proposed algorithm is controlled via two user-defined parameters: alpha and offset. Alpha controls the size of cavities or holes that cannot be traversed during carving, while offset controls the distance between the vertices of the output mesh and the input. Our algorithm is guaranteed to terminate and to yield a valid and strictly enclosing mesh, even for defect-laden inputs. Genericity is achieved using an abstract interface probing the input, enabling any geometry to be used, provided a few basic geometric queries can be answered. We benchmark the algorithm on large public datasets such as Thingi10k, and compare it to state-of-the-art approaches in terms of robustness, approximation, output complexity, speed, and peak memory consumption. Our implementation is available through the CGAL library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.