Metal oxide (MO) surface nanopatterns can be prepared using Soft-Nano-Imprint-Lithography (soft-NIL) combined with sol-gel deposition processing. Even if sol-gel layers remain gel-like straight after deposition, their accurate replication from a mould remains difficult as a result of the fast evaporation-induced stiffening that prevents efficient mass transfer underneath the soft mould. The present work reports a detailed investigation of the role of the xerogel layer conditioning (temperature and relative humidity) prior to imprinting and its influence on the quality of the replication. This study is performed on four different systems namely titania, alumina, silica and yttria-stabilised zirconia. We demonstrate that the quality of the replica can be considerably improved without the use of sacrificial stabilising organic agents, but by simply applying an optimal aging at controlled temperature and relative humidity specific to each different reported MO. In each case this condition corresponds to swelling the initial xerogels of around 30% by water absorption from humidity. We show that this degree of swelling represents the best compromise for sufficiently increasing the xerogel fluidity while limiting the shrinkage upon final thermal curing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.