We evaluated quantitative EEG measures to determine a screening index to discriminate Alzheimer's disease (AD) patients from normal individuals. Methods: Two groups of individuals older than 50 years, comprising a control group of 57 normal volunteers and a study group of 50 patients with probable AD, were compared. EEG recordings were obtained from subjects in a wake state with eyes closed at rest for 30 min. Logistic regression analysis was conducted. Results: Spectral potentials of the alpha and theta bands were computed for all electrodes and the alpha/theta ratio calculated. Logistic regression of alpha/theta of the mean potential of the C3 and O1 electrodes was carried out. A formula was calculated to aid the diagnosis of AD yielding 76.4% sensitivity and 84.6% specificity for AD with an area under the ROC curve of 0.92. Conclusion: Logistic regression of alpha/theta of the spectrum of the mean potential of EEG represents a good marker discriminating AD patients from normal controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.