Giardia intestinalis is a single-cell eukaryotic microorganism, regarded as one of the earliest divergent eukaryotes and thus an attractive model to study the evolution of regulatory systems. Giardia has two different forms throughout its life cycle, cyst and trophozoite, and changes from one to the other in response to environmental signals. The two differentiation processes involve a differential gene expression as well as a quick and specific protein turnover that may be mediated by the ubiquitin/proteasome system. The aim of this work was to search for unreported components of the ubiquitination system and to experimentally demonstrate their expression in the parasite and during the two differentiation processes. We found activity of protein ubiquitination in G. intestinalis trophozoites and analyzed the transcription of the ubiquitin gene, as well as that of the activating (E1), conjugating (E2), and ligase (E3) ubiquitin enzymes during encystation and excystation. A constant ubiquitin expression persisted during the parasite's differentiation processes, whereas variation in transcription was observed in the other genes under study.
Giardia intestinalis is an intestinal parasite that has sparked considerable interest because of the public health problem it creates and because it is regarded as one of the earliest divergent eukaryotes. The present report describes a new method for quick, clean, and effective isolation of G. intestinalis cysts from fecal samples. The isolated cysts have the quality required for biochemical studies of the excystation process.
Calmodulin (CaM) is the primary sensor for calcium in the cell. It modulates various functions by activating CaM-binding proteins (CaMBPs). This study examined the calcium/CaM-dependent system in the ancient eukaryote Giardia intestinalis. A specific antibody against the parasite's CaM was developed; this protein's expression and location during different stages of the parasite's life cycle were analyzed. The results showed that it is a housekeeping protein which is possibly involved in the parasite's motility. No CaMBP has been identified in G. intestinalis to date. Pull-down assays were used for isolating proteins which specifically bind to CaM in a calcium-dependent way. Three of them were identified through mass spectrometry; they were GASP180, α-tubulin, and pyruvate phosphate dikinase (PPDK).The first two are cytoskeleton proteins, and the last one is an essential enzyme for glycolysis. The presence of binding sites was analyzed through bioinformatics in each protein sequence. This is the first report of a CaMBP in this organism; it is considered to be a very interesting differentiation model, indicating that CaM is involved at least in two vital processes: G. intestinalis motility and energetic metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.